Loading…
Ground vibration generated by trains in underground tunnels
A popular method used to reduce vibration transmitted from underground railways into nearby buildings is floating-slab track, whereby a concrete slab supporting the two rails is mounted on rubber bearings or steel springs to isolate it from the tunnel invert. This paper adds a track model to a previ...
Saved in:
Published in: | Journal of sound and vibration 2006-07, Vol.294 (4), p.706-736 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A popular method used to reduce vibration transmitted from underground railways into nearby buildings is floating-slab track, whereby a concrete slab supporting the two rails is mounted on rubber bearings or steel springs to isolate it from the tunnel invert. This paper adds a track model to a previously developed three-dimensional tunnel model in order to assess the effectiveness of floating-slab track. A slab beam coupled to the tunnel in the wavenumber domain, with the slab bearings represented by an elastic layer, is examined first. A second beam representing the two rails together is then coupled to the slab, and axle masses representing a train are added to the rail beam. Power-spectral densities and RMS levels of soil vibration due to random roughness-displacement excitation between the masses and the rail beam are calculated. Analytical techniques are used to minimise the computational requirements of the model. The results demonstrate the inadequacy of simple mass–spring and Winkler-beam models with rigid foundations for the assessment of the vibration-isolation performance of railway track. They suggest that the achievable insertion loss is modest and that floating the track slab may in fact cause increased transmission of vibration under certain conditions. |
---|---|
ISSN: | 0022-460X 1095-8568 |
DOI: | 10.1016/j.jsv.2005.12.031 |