Loading…
Identification and Characterization of Glycosyltransferases Involved in the Biosynthesis of Neodiosmin
Glycosylation plays a very important role in plant secondary metabolic modifications. Neodiosmin, identified as diosmetin-7-O-neohesperidoside, not only acts to mitigate bitterness and enhance the flavor of food but also serves as a pivotal metabolite that reinforces plant immunity. Investigating it...
Saved in:
Published in: | Journal of agricultural and food chemistry 2024-02, Vol.72 (8), p.4348-4357 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Glycosylation plays a very important role in plant secondary metabolic modifications. Neodiosmin, identified as diosmetin-7-O-neohesperidoside, not only acts to mitigate bitterness and enhance the flavor of food but also serves as a pivotal metabolite that reinforces plant immunity. Investigating its biosynthetic pathway in plants is crucial for optimizing fruit quality and fortifying plant immune responses. In this study, through analysis of transcriptomic data from Astilbe chinensis, we identified two novel uridine diphosphate (UDP)-glycosyltransferases (UGTs): Ach14791 (AcUGT73C18), responsible for flavonoid 7-O-glycosylation and Ach15849 (AcUGT79B37), involved in flavonoid-7-O-glucoside-2″-O-rhamnosylation. By delving into enzymatic properties and catalytic promiscuity, we developed a biosynthesis route of neodiosmin by establishing a one-pot enzyme-catalyzed cascade reaction. Simultaneously, lonicerin and rhoifolin were also successfully synthesized using the same one-pot dual-enzyme catalytic reaction. Taken together, our findings not only identified two novel UGTs involved in neodiosmin biosynthesis but also provided important biocatalytic components for the microorganism-based biosynthesis of flavonoid-7-O-disaccharide compounds. |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/acs.jafc.3c09308 |