Loading…

A fast power loss calculation method for long real time thermal simulation of IGBT modules for a three-phase inverter system

A fast power losses calculation method for long real time thermal simulation of IGBT module for a three‐phase inverter system is presented in this paper. The speed‐up is obtained by simplifying the representation of the three‐phase inverter at the system modelling stage. This allows the inverter sys...

Full description

Saved in:
Bibliographic Details
Published in:International journal of numerical modelling 2006-01, Vol.19 (1), p.33-46
Main Authors: Zhou, Z., Khanniche, M. S., Igic, P., Kong, S. T., Towers, M., Mawby, P. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A fast power losses calculation method for long real time thermal simulation of IGBT module for a three‐phase inverter system is presented in this paper. The speed‐up is obtained by simplifying the representation of the three‐phase inverter at the system modelling stage. This allows the inverter system to be simulated predicting the effective voltages and currents whilst using large time‐step. An average power losses is calculated during each clock period, using a pre‐defined look‐up table, which stores the switching and on‐state losses generated by either direct measurement or automatically based upon compact models for the semiconductor devices. This simulation methodology brings together accurate models of the electrical systems performance, state of the art‐device compact models and a realistic simulation of the thermal performance in a usable period of CPU time and is suitable for a long real time thermal simulation of inverter power devices with arbitrary load. Thermal simulation results show that with the same IGBT characteristics applied, the proposed model can give the almost same thermal performance compared to the full physically based device modelling approach. Copyright © 2006 John Wiley & Sons, Ltd.
ISSN:0894-3370
1099-1204
DOI:10.1002/jnm.597