Loading…
Particles on demand method: Theoretical analysis, simplification techniques, and model extensions
The particles on demand method [Phys. Rev. Lett. 121, 130602 (2018)0031-900710.1103/PhysRevLett.121.130602] was recently formulated with a conservative finite-volume discretization and validated against challenging benchmarks. In this work, we focus on the properties of the reference frame transform...
Saved in:
Published in: | Physical review. E 2024-01, Vol.109 (1-2), p.015304-015304, Article 015304 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The particles on demand method [Phys. Rev. Lett. 121, 130602 (2018)0031-900710.1103/PhysRevLett.121.130602] was recently formulated with a conservative finite-volume discretization and validated against challenging benchmarks. In this work, we focus on the properties of the reference frame transformation and its implications on the accuracy of the model. Based on these considerations, we propose strategies that simplify the scheme and generalize it to include a tunable Prandtl number via quasi-equilibrium relaxation. Finally, we adapt concepts from the multiscale semi-Lagrangian lattice Boltzmann formulation to the proposed framework, further improving the potential and the operating range of the kinetic model. Numerical simulations of high Mach compressible flows demonstrate excellent accuracy and stability of the model over a wide range of conditions. |
---|---|
ISSN: | 2470-0045 2470-0053 |
DOI: | 10.1103/PhysRevE.109.015304 |