Loading…
Demethoxylation of curcumin enhances its inhibition on human and rat 17β-hydroxysteroid dehydrogenase 3: QSAR structure-activity relationship and in silico docking analysis
Curcuminoids have many pharmacological effects. They or their metabolites may have side effects by suppressing 17β-hydroxysteroid dehydrogenase 3 (17β-HSD3). Herein, we investigated the inhibition of curcuminoids and their metabolites on human and rat 17β-HSD3 and analyzed their structure-activity r...
Saved in:
Published in: | Food and chemical toxicology 2024-04, Vol.186, p.114489-114489, Article 114489 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Curcuminoids have many pharmacological effects. They or their metabolites may have side effects by suppressing 17β-hydroxysteroid dehydrogenase 3 (17β-HSD3). Herein, we investigated the inhibition of curcuminoids and their metabolites on human and rat 17β-HSD3 and analyzed their structure-activity relationship (SAR) and performed in silico docking. Curcuminoids and their metabolites ranked in terms of IC50 values against human 17β-HSD3 were bisdemethoxycurcumin (0.61 μM) > curcumin (8.63 μM) > demethoxycurcumin (9.59 μM) > tetrahydrocurcumin (22.04 μM) > cyclocurcumin (29.14 μM), and those against rat 17β-HSD3 were bisdemethoxycurcumin (3.94 μM) > demethoxycurcumin (4.98 μM) > curcumin (9.62 μM) > tetrahydrocurcumin (45.82 μM) > cyclocurcumin (143.5 μM). The aforementioned chemicals were mixed inhibitors for both enzymes. Molecular docking analysis revealed that they bind to the domain between the androstenedione and NADPH active sites of 17β-HSD3. Bivariate correlation analysis showed a positive correlation between LogP and pKa of curcumin derivatives with their IC50 values. Additionally, a 3D-QSAR analysis revealed that a pharmacophore model consisting of three hydrogen bond acceptor regions and one hydrogen bond donor region provided a better fit for bisdemethoxycurcumin compared to curcumin. In conclusion, curcuminoids and their metabolites possess the ability to inhibit androgen biosynthesis by directly targeting human and rat 17β-HSD3. The inhibitory strength of these compounds is influenced by their lipophilicity and ionization characteristics.
[Display omitted]
•Bisdemethoxycurcumin potently inhibits human 17β-HSD3.•Curcumin derivatives inhibit human 17β-HSD3 with structure differences.•Curcuminoids potently inhibit testosterone secretion in LNCaP cells.•Curcumin derivatives inhibit rat 17β-HSD3 with structure differences. |
---|---|
ISSN: | 0278-6915 1873-6351 |
DOI: | 10.1016/j.fct.2024.114489 |