Loading…

Recent Advances in Iridium‐based Electrocatalysts for Acidic Electrolyte Oxidation

Ongoing research to develop advanced electrocatalysts for the oxygen evolution reaction (OER) is needed to address demand for efficient energy conversion and carbon‐free energy sources. In the OER process, acidic electrolytes have higher proton concentration and faster response than alkaline ones, b...

Full description

Saved in:
Bibliographic Details
Published in:ChemSusChem 2024-07, Vol.17 (13), p.e202400295-n/a
Main Authors: Li, Wanqing, Bu, Yunfei, Ge, Xinlei, Li, Feng, Han, Gao‐Feng, Baek, Jong‐Beom
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ongoing research to develop advanced electrocatalysts for the oxygen evolution reaction (OER) is needed to address demand for efficient energy conversion and carbon‐free energy sources. In the OER process, acidic electrolytes have higher proton concentration and faster response than alkaline ones, but their harsh strongly acidic environment requires catalysts with greater corrosion and oxidation resistance. At present, iridium oxide (IrO2) with its strong stability and excellent catalytic performance is the catalyst of choice for the anode side of commercial PEM electrolysis cells. However, the scarcity and high cost of iridium (Ir) and the unsatisfactory activity of IrO2 hinder industrial scale application and the sustainable development of acidic OER catalytic technology. This highlights the importance of further research on acidic Ir‐based OER catalysts. In this review, recent advances in Ir‐based acidic OER electrocatalysts are summarized, including fundamental understanding of the acidic OER mechanism, recent insights into the stability of acidic OER catalysts, highly efficient Ir‐based electrocatalysts, and common strategies for optimizing Ir‐based catalysts. The future challenges and prospects of developing highly effective Ir‐based catalysts are also discussed. This review summarizes recent advances in Ir‐based acidic OER electrocatalysts, including fundamental understanding of acidic OER mechanisms, recent insights into the stability of acidic OER catalysts, highly efficient Ir‐based electrocatalysts, and common strategies for optimizing Ir‐based catalysts. The future challenges and prospects of developing highly effective Ir‐based catalysts are also discussed.
ISSN:1864-5631
1864-564X
1864-564X
DOI:10.1002/cssc.202400295