Loading…

Theoretical design and performance prediction of deep red/near-infrared thermally activated delayed fluorescence molecules with through space charge transfer

Thermally activated delayed fluorescence (TADF) molecules with through-space charge transfer (TSCT) have attracted much attention in recent years because of their ability to simultaneously reduce the energy difference (Δ E ST ) and enlarge the spin-orbit coupling (SOC). In this paper, 40 molecules a...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2024-02, Vol.26 (9), p.776-7717
Main Authors: Li, Xiaofang, Wang, Xiaofei, Wu, Zhimin, Zhang, Kai, Li, Rui, Song, Yuzhi, Fan, Jianzhong, Wang, Chuan-Kui, Lin, Lili
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c296t-ffe8a5f3ce0a9054e8c4f9e9b60137bf557ba035cb48c1b434e1b8ea281206103
container_end_page 7717
container_issue 9
container_start_page 776
container_title Physical chemistry chemical physics : PCCP
container_volume 26
creator Li, Xiaofang
Wang, Xiaofei
Wu, Zhimin
Zhang, Kai
Li, Rui
Song, Yuzhi
Fan, Jianzhong
Wang, Chuan-Kui
Lin, Lili
description Thermally activated delayed fluorescence (TADF) molecules with through-space charge transfer (TSCT) have attracted much attention in recent years because of their ability to simultaneously reduce the energy difference (Δ E ST ) and enlarge the spin-orbit coupling (SOC). In this paper, 40 molecules are theoretically designed by changing the different substitution positions of the donors and acceptors, and systematically investigated based on the first-principles calculations and excited-state dynamics study. It is found that the emission wavelengths of v-shaped molecules with intramolecular TSCT are larger than those of the molecules without TSCT. Therefore, the intramolecular TSCT can induce the red-shift of the emission and realize the deep-red/near-infrared emission. Besides intramolecular TSCT can simultaneously increase the SOC as well as the oscillator strength and reduce the Δ E ST . In addition, PXZ or PTZ can also favor the realization of smaller Δ E ST and red-shift emission. Our calculations suggest that intramolecular TSCT and suitable donors (-PXZ or -PTZ) are an effective strategy for the design of efficient deep red/near-infrared TADF emitters. Thermally activated delayed fluorescence (TADF) molecules with through-space charge transfer (TSCT) simultaneously reduce the energy difference (Δ E ST ) and enlarge the spin-orbit coupling (SOC).
doi_str_mv 10.1039/d3cp05670h
format article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_2928586937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932390932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-ffe8a5f3ce0a9054e8c4f9e9b60137bf557ba035cb48c1b434e1b8ea281206103</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi1E1ZZtL9xBlrigSqF2nA_7iBb6IVWCQ3uOJs54k8qxg52A9sf0v-Jly1bqxWPPPH5nNC8h7zn7wplQl53QEyurmvVvyCkvKpEpJou3h3tdnZB3MT4yxnjJxTE5EVLUuRDVKXm679EHnAcNlnYYh42j4Do6YTA-jOA00ilgN-h58I56kyCcaMpcOoSQDc4ESC8695hwa7cUEvob5pTr0MI2RWOX1CNq3KmN3qJeLEb6Z5j79C_4ZdPTOEEq6h7CBukcwEWD4YwcGbARz5_jijxcfb9f32R3P65v11_vMp2ras6MQQmlERoZKFYWKHVhFKq2YlzUrSnLugUmSt0WUvO2EAXyViLkkuesSjtckc973Sn4XwvGuRmHNK614NAvsclVLktZKVEn9NMr9NEvwaXpEiVyodjuXJGLPaWDjzGgaaYwjBC2DWfNzrTmm1j__GfaTYI_Pksu7YjdAf3vUgI-7IEQ9aH64rr4CzEJn14</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932390932</pqid></control><display><type>article</type><title>Theoretical design and performance prediction of deep red/near-infrared thermally activated delayed fluorescence molecules with through space charge transfer</title><source>Royal Society of Chemistry</source><creator>Li, Xiaofang ; Wang, Xiaofei ; Wu, Zhimin ; Zhang, Kai ; Li, Rui ; Song, Yuzhi ; Fan, Jianzhong ; Wang, Chuan-Kui ; Lin, Lili</creator><creatorcontrib>Li, Xiaofang ; Wang, Xiaofei ; Wu, Zhimin ; Zhang, Kai ; Li, Rui ; Song, Yuzhi ; Fan, Jianzhong ; Wang, Chuan-Kui ; Lin, Lili</creatorcontrib><description>Thermally activated delayed fluorescence (TADF) molecules with through-space charge transfer (TSCT) have attracted much attention in recent years because of their ability to simultaneously reduce the energy difference (Δ E ST ) and enlarge the spin-orbit coupling (SOC). In this paper, 40 molecules are theoretically designed by changing the different substitution positions of the donors and acceptors, and systematically investigated based on the first-principles calculations and excited-state dynamics study. It is found that the emission wavelengths of v-shaped molecules with intramolecular TSCT are larger than those of the molecules without TSCT. Therefore, the intramolecular TSCT can induce the red-shift of the emission and realize the deep-red/near-infrared emission. Besides intramolecular TSCT can simultaneously increase the SOC as well as the oscillator strength and reduce the Δ E ST . In addition, PXZ or PTZ can also favor the realization of smaller Δ E ST and red-shift emission. Our calculations suggest that intramolecular TSCT and suitable donors (-PXZ or -PTZ) are an effective strategy for the design of efficient deep red/near-infrared TADF emitters. Thermally activated delayed fluorescence (TADF) molecules with through-space charge transfer (TSCT) simultaneously reduce the energy difference (Δ E ST ) and enlarge the spin-orbit coupling (SOC).</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/d3cp05670h</identifier><identifier>PMID: 38372336</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Charge transfer ; Coupling (molecular) ; Doppler effect ; Emission analysis ; Emitters ; First principles ; Fluorescence ; Mathematical analysis ; Near infrared radiation ; Performance prediction ; Red shift ; Space charge ; Spin-orbit interactions</subject><ispartof>Physical chemistry chemical physics : PCCP, 2024-02, Vol.26 (9), p.776-7717</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c296t-ffe8a5f3ce0a9054e8c4f9e9b60137bf557ba035cb48c1b434e1b8ea281206103</cites><orcidid>0000-0002-5319-713X ; 0000-0002-9629-5995 ; 0000-0002-1524-0037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38372336$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xiaofang</creatorcontrib><creatorcontrib>Wang, Xiaofei</creatorcontrib><creatorcontrib>Wu, Zhimin</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Song, Yuzhi</creatorcontrib><creatorcontrib>Fan, Jianzhong</creatorcontrib><creatorcontrib>Wang, Chuan-Kui</creatorcontrib><creatorcontrib>Lin, Lili</creatorcontrib><title>Theoretical design and performance prediction of deep red/near-infrared thermally activated delayed fluorescence molecules with through space charge transfer</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Thermally activated delayed fluorescence (TADF) molecules with through-space charge transfer (TSCT) have attracted much attention in recent years because of their ability to simultaneously reduce the energy difference (Δ E ST ) and enlarge the spin-orbit coupling (SOC). In this paper, 40 molecules are theoretically designed by changing the different substitution positions of the donors and acceptors, and systematically investigated based on the first-principles calculations and excited-state dynamics study. It is found that the emission wavelengths of v-shaped molecules with intramolecular TSCT are larger than those of the molecules without TSCT. Therefore, the intramolecular TSCT can induce the red-shift of the emission and realize the deep-red/near-infrared emission. Besides intramolecular TSCT can simultaneously increase the SOC as well as the oscillator strength and reduce the Δ E ST . In addition, PXZ or PTZ can also favor the realization of smaller Δ E ST and red-shift emission. Our calculations suggest that intramolecular TSCT and suitable donors (-PXZ or -PTZ) are an effective strategy for the design of efficient deep red/near-infrared TADF emitters. Thermally activated delayed fluorescence (TADF) molecules with through-space charge transfer (TSCT) simultaneously reduce the energy difference (Δ E ST ) and enlarge the spin-orbit coupling (SOC).</description><subject>Charge transfer</subject><subject>Coupling (molecular)</subject><subject>Doppler effect</subject><subject>Emission analysis</subject><subject>Emitters</subject><subject>First principles</subject><subject>Fluorescence</subject><subject>Mathematical analysis</subject><subject>Near infrared radiation</subject><subject>Performance prediction</subject><subject>Red shift</subject><subject>Space charge</subject><subject>Spin-orbit interactions</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v1DAQhi1E1ZZtL9xBlrigSqF2nA_7iBb6IVWCQ3uOJs54k8qxg52A9sf0v-Jly1bqxWPPPH5nNC8h7zn7wplQl53QEyurmvVvyCkvKpEpJou3h3tdnZB3MT4yxnjJxTE5EVLUuRDVKXm679EHnAcNlnYYh42j4Do6YTA-jOA00ilgN-h58I56kyCcaMpcOoSQDc4ESC8695hwa7cUEvob5pTr0MI2RWOX1CNq3KmN3qJeLEb6Z5j79C_4ZdPTOEEq6h7CBukcwEWD4YwcGbARz5_jijxcfb9f32R3P65v11_vMp2ras6MQQmlERoZKFYWKHVhFKq2YlzUrSnLugUmSt0WUvO2EAXyViLkkuesSjtckc973Sn4XwvGuRmHNK614NAvsclVLktZKVEn9NMr9NEvwaXpEiVyodjuXJGLPaWDjzGgaaYwjBC2DWfNzrTmm1j__GfaTYI_Pksu7YjdAf3vUgI-7IEQ9aH64rr4CzEJn14</recordid><startdate>20240228</startdate><enddate>20240228</enddate><creator>Li, Xiaofang</creator><creator>Wang, Xiaofei</creator><creator>Wu, Zhimin</creator><creator>Zhang, Kai</creator><creator>Li, Rui</creator><creator>Song, Yuzhi</creator><creator>Fan, Jianzhong</creator><creator>Wang, Chuan-Kui</creator><creator>Lin, Lili</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5319-713X</orcidid><orcidid>https://orcid.org/0000-0002-9629-5995</orcidid><orcidid>https://orcid.org/0000-0002-1524-0037</orcidid></search><sort><creationdate>20240228</creationdate><title>Theoretical design and performance prediction of deep red/near-infrared thermally activated delayed fluorescence molecules with through space charge transfer</title><author>Li, Xiaofang ; Wang, Xiaofei ; Wu, Zhimin ; Zhang, Kai ; Li, Rui ; Song, Yuzhi ; Fan, Jianzhong ; Wang, Chuan-Kui ; Lin, Lili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-ffe8a5f3ce0a9054e8c4f9e9b60137bf557ba035cb48c1b434e1b8ea281206103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Charge transfer</topic><topic>Coupling (molecular)</topic><topic>Doppler effect</topic><topic>Emission analysis</topic><topic>Emitters</topic><topic>First principles</topic><topic>Fluorescence</topic><topic>Mathematical analysis</topic><topic>Near infrared radiation</topic><topic>Performance prediction</topic><topic>Red shift</topic><topic>Space charge</topic><topic>Spin-orbit interactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiaofang</creatorcontrib><creatorcontrib>Wang, Xiaofei</creatorcontrib><creatorcontrib>Wu, Zhimin</creatorcontrib><creatorcontrib>Zhang, Kai</creatorcontrib><creatorcontrib>Li, Rui</creatorcontrib><creatorcontrib>Song, Yuzhi</creatorcontrib><creatorcontrib>Fan, Jianzhong</creatorcontrib><creatorcontrib>Wang, Chuan-Kui</creatorcontrib><creatorcontrib>Lin, Lili</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiaofang</au><au>Wang, Xiaofei</au><au>Wu, Zhimin</au><au>Zhang, Kai</au><au>Li, Rui</au><au>Song, Yuzhi</au><au>Fan, Jianzhong</au><au>Wang, Chuan-Kui</au><au>Lin, Lili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical design and performance prediction of deep red/near-infrared thermally activated delayed fluorescence molecules with through space charge transfer</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2024-02-28</date><risdate>2024</risdate><volume>26</volume><issue>9</issue><spage>776</spage><epage>7717</epage><pages>776-7717</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Thermally activated delayed fluorescence (TADF) molecules with through-space charge transfer (TSCT) have attracted much attention in recent years because of their ability to simultaneously reduce the energy difference (Δ E ST ) and enlarge the spin-orbit coupling (SOC). In this paper, 40 molecules are theoretically designed by changing the different substitution positions of the donors and acceptors, and systematically investigated based on the first-principles calculations and excited-state dynamics study. It is found that the emission wavelengths of v-shaped molecules with intramolecular TSCT are larger than those of the molecules without TSCT. Therefore, the intramolecular TSCT can induce the red-shift of the emission and realize the deep-red/near-infrared emission. Besides intramolecular TSCT can simultaneously increase the SOC as well as the oscillator strength and reduce the Δ E ST . In addition, PXZ or PTZ can also favor the realization of smaller Δ E ST and red-shift emission. Our calculations suggest that intramolecular TSCT and suitable donors (-PXZ or -PTZ) are an effective strategy for the design of efficient deep red/near-infrared TADF emitters. Thermally activated delayed fluorescence (TADF) molecules with through-space charge transfer (TSCT) simultaneously reduce the energy difference (Δ E ST ) and enlarge the spin-orbit coupling (SOC).</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>38372336</pmid><doi>10.1039/d3cp05670h</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5319-713X</orcidid><orcidid>https://orcid.org/0000-0002-9629-5995</orcidid><orcidid>https://orcid.org/0000-0002-1524-0037</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2024-02, Vol.26 (9), p.776-7717
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_2928586937
source Royal Society of Chemistry
subjects Charge transfer
Coupling (molecular)
Doppler effect
Emission analysis
Emitters
First principles
Fluorescence
Mathematical analysis
Near infrared radiation
Performance prediction
Red shift
Space charge
Spin-orbit interactions
title Theoretical design and performance prediction of deep red/near-infrared thermally activated delayed fluorescence molecules with through space charge transfer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T10%3A32%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20design%20and%20performance%20prediction%20of%20deep%20red/near-infrared%20thermally%20activated%20delayed%20fluorescence%20molecules%20with%20through%20space%20charge%20transfer&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Li,%20Xiaofang&rft.date=2024-02-28&rft.volume=26&rft.issue=9&rft.spage=776&rft.epage=7717&rft.pages=776-7717&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/d3cp05670h&rft_dat=%3Cproquest_rsc_p%3E2932390932%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-ffe8a5f3ce0a9054e8c4f9e9b60137bf557ba035cb48c1b434e1b8ea281206103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2932390932&rft_id=info:pmid/38372336&rfr_iscdi=true