Loading…
Quantitative Assessment of Fungal Biomarkers in Clinical Samples via an Interface‐Modulated Optical Fiber Biosensor
Invasive fungal infections pose a significant public health threat. The lack of precise and timely diagnosis is a primary factor contributing to the significant increase in patient mortality rates. Here, an interface‐modulated biosensor utilizing an optical fiber for quantitative analysis of fungal...
Saved in:
Published in: | Advanced materials (Weinheim) 2024-05, Vol.36 (21), p.e2312985-n/a |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Invasive fungal infections pose a significant public health threat. The lack of precise and timely diagnosis is a primary factor contributing to the significant increase in patient mortality rates. Here, an interface‐modulated biosensor utilizing an optical fiber for quantitative analysis of fungal biomarkers at the early stage of point‐of‐care testing (POCT), is reported. By integrating surface refractive index (RI) modulation and plasmon enhancement, the sensor to achieve high sensitivity in a directional response to the target analytes, is successfully optimized. As a result, a compact fiber‐optic sensor with rapid response time, cost‐effectiveness, exceptional sensitivity, stability, and specificity, is developed. This sensor can successfully identify the biomarkers of specific pathogens from blood or other tissue specimens in animal models. It quantifies clinical blood samples with precision and effectively discriminates between negative and positive cases, thereby providing timely alerts to potential patients. It significantly reduces the detection time of fungal infection to only 30 min. Additionally, this approach exhibits remarkable stability and achieves a limit of detection (LOD) three orders of magnitude lower than existing methods. It overcomes the limitations of existing detection methods, including a high rate of misdiagnosis, prolonged detection time, elevated costs, and the requirement for stringent laboratory conditions.
An interface‐modulated biosensor, utilizing an optical fiber for the quantitative analysis of fungal biomarkers for point‐of‐care testing (POCT), is demonstrated. It overcomes the limitations of existing detection methods, including a high rate of misdiagnosis, prolonged detection time, elevated costs, and the requirement for stringent laboratory conditions, and offers promising prospects for prompt and precise diagnosis in resource‐constrained and underdeveloped regions. |
---|---|
ISSN: | 0935-9648 1521-4095 |
DOI: | 10.1002/adma.202312985 |