Loading…
Elucidating the Role of Electron-Donating Groups in Halogen Bonding
Computational quantum chemical techniques were utilized to systematically examine how electron-donating groups affect the electronic and spectroscopic properties of halogen bond donors and their corresponding complexes. Unlike the majority of studies on halogen bonding, where electron-withdrawing gr...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2024-02, Vol.128 (8), p.1477-1490 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Computational quantum chemical techniques were utilized to systematically examine how electron-donating groups affect the electronic and spectroscopic properties of halogen bond donors and their corresponding complexes. Unlike the majority of studies on halogen bonding, where electron-withdrawing groups are utilized, this work investigates the influence of electron-donating substituents within the halogen bond donors. Statistical analyses were performed on the descriptors of halogen bond donors in a prescribed set of archetype, halo-alkyne, halo-benzene, and halo-ethynyl benzene halogen bond systems. The σ-hole magnitude, binding and interaction energies, and the vibrational X···N local force constant (where X = Cl, Br, I, and At) were found to correlate very well in a monotonic and linear manner with all other properties studied. In addition, enhanced halogen bonds were found when the systems contained electron-donating groups that could form intramolecular hydrogen bonds with the electronegative belt of the halogen atom and adjacent linker features. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/acs.jpca.3c06894 |