Loading…

Intrinsic Defect-Driven Synergistic Synaptic Heterostructures for Gate-Free Neuromorphic Phototransistors

The optoelectronic synaptic devices based on two-dimensional (2D) materials offer great advances for future neuromorphic visual systems with dramatically improved integration density and power efficiency. The effective charge capture and retention are considered as one vital prerequisite to realizin...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2024-05, Vol.36 (19), p.e2309940-e2309940
Main Authors: Deng, Yao, Liu, Shenghong, Ma, Xiaoxi, Guo, Shuyang, Zhai, Baoxing, Zhang, Zihan, Li, Manshi, Yu, Yimeng, Hu, Wenhua, Yang, Hui, Kapitonov, Yury, Han, Junbo, Wu, Jinsong, Li, Yuan, Zhai, Tianyou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c323t-1731907721a7b0b75e6c8b744b8c8c31d4c2a03cd581bf54592f35c705e45d4f3
cites cdi_FETCH-LOGICAL-c323t-1731907721a7b0b75e6c8b744b8c8c31d4c2a03cd581bf54592f35c705e45d4f3
container_end_page e2309940
container_issue 19
container_start_page e2309940
container_title Advanced materials (Weinheim)
container_volume 36
creator Deng, Yao
Liu, Shenghong
Ma, Xiaoxi
Guo, Shuyang
Zhai, Baoxing
Zhang, Zihan
Li, Manshi
Yu, Yimeng
Hu, Wenhua
Yang, Hui
Kapitonov, Yury
Han, Junbo
Wu, Jinsong
Li, Yuan
Zhai, Tianyou
description The optoelectronic synaptic devices based on two-dimensional (2D) materials offer great advances for future neuromorphic visual systems with dramatically improved integration density and power efficiency. The effective charge capture and retention are considered as one vital prerequisite to realizing the synaptic memory function. However, the current 2D synaptic devices are predominantly relied on materials with artificially-engineered defects or intricate gate-controlled architectures to realize the charge trapping process. These approaches, unfortunately, suffer from the degradation of pristine materials, rapid device failure, and unnecessary complication of device structures. To address these challenges, an innovative gate-free heterostructure paradigm is introduced herein. The heterostructure presents a distinctive dome-like morphology wherein a defect-rich Fe S core is enveloped snugly by a curved MoS dome shell (Fe S @MoS ), allowing the realization of effective photocarrier trapping through the intrinsic defects in the adjacent Fe S core. The resultant neuromorphic devices exhibit remarkable light-tunable synaptic behaviors with memory time up to ≈800 s under single optical pulse, thus demonstrating great advances in simulating visual recognition system with significantly improved image recognition efficiency. The emergence of such heterostructures foreshadows a promising trajectory for underpinning future synaptic devices, catalyzing the realization of high-efficiency and intricate visual processing applications.
doi_str_mv 10.1002/adma.202309940
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2928856393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3052600029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-1731907721a7b0b75e6c8b744b8c8c31d4c2a03cd581bf54592f35c705e45d4f3</originalsourceid><addsrcrecordid>eNpdkUlLxEAQhRtRdFyuHiXgxUvG6i1JH8VxA1FBPYdOp6KRSXqs7gj-e3twOXiqgvrqUfUeY4cc5hxAnNp2sHMBQoIxCjbYjGvBcwVGb7IZGKlzU6hqh-2G8AYApoBim-3ISpZScZix_maM1I-hd9kCO3QxX1D_gWP2-DkivfQhpknq7WrdXGNE8iHS5OJEGLLOU3ZlI-aXhJjd4UR-8LR6TezDq48-kk3aIXoK-2yrs8uABz91jz1fXjydX-e391c352e3uZNCxpyXkhsoS8Ft2UBTaixc1ZRKNZWrnOStcsKCdK2ueNNppY3opHYlaFS6VZ3cYyffuivy7xOGWA99cLhc2hH9FGphRFXpQhqZ0ON_6JufaEzX1RK0KJJhwiRq_k259Hog7OoV9YOlz5pDvQ6hXodQ_4WQFo5-ZKdmwPYP_3VdfgGq34No</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052600029</pqid></control><display><type>article</type><title>Intrinsic Defect-Driven Synergistic Synaptic Heterostructures for Gate-Free Neuromorphic Phototransistors</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Deng, Yao ; Liu, Shenghong ; Ma, Xiaoxi ; Guo, Shuyang ; Zhai, Baoxing ; Zhang, Zihan ; Li, Manshi ; Yu, Yimeng ; Hu, Wenhua ; Yang, Hui ; Kapitonov, Yury ; Han, Junbo ; Wu, Jinsong ; Li, Yuan ; Zhai, Tianyou</creator><creatorcontrib>Deng, Yao ; Liu, Shenghong ; Ma, Xiaoxi ; Guo, Shuyang ; Zhai, Baoxing ; Zhang, Zihan ; Li, Manshi ; Yu, Yimeng ; Hu, Wenhua ; Yang, Hui ; Kapitonov, Yury ; Han, Junbo ; Wu, Jinsong ; Li, Yuan ; Zhai, Tianyou</creatorcontrib><description>The optoelectronic synaptic devices based on two-dimensional (2D) materials offer great advances for future neuromorphic visual systems with dramatically improved integration density and power efficiency. The effective charge capture and retention are considered as one vital prerequisite to realizing the synaptic memory function. However, the current 2D synaptic devices are predominantly relied on materials with artificially-engineered defects or intricate gate-controlled architectures to realize the charge trapping process. These approaches, unfortunately, suffer from the degradation of pristine materials, rapid device failure, and unnecessary complication of device structures. To address these challenges, an innovative gate-free heterostructure paradigm is introduced herein. The heterostructure presents a distinctive dome-like morphology wherein a defect-rich Fe S core is enveloped snugly by a curved MoS dome shell (Fe S @MoS ), allowing the realization of effective photocarrier trapping through the intrinsic defects in the adjacent Fe S core. The resultant neuromorphic devices exhibit remarkable light-tunable synaptic behaviors with memory time up to ≈800 s under single optical pulse, thus demonstrating great advances in simulating visual recognition system with significantly improved image recognition efficiency. The emergence of such heterostructures foreshadows a promising trajectory for underpinning future synaptic devices, catalyzing the realization of high-efficiency and intricate visual processing applications.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202309940</identifier><identifier>PMID: 38373410</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Charge efficiency ; Defects ; Devices ; Domes ; Efficiency ; Heterostructures ; Molybdenum disulfide ; Neuromorphic computing ; Optoelectronic devices ; Phototransistors ; Power efficiency ; System effectiveness ; Trapping ; Two dimensional materials</subject><ispartof>Advanced materials (Weinheim), 2024-05, Vol.36 (19), p.e2309940-e2309940</ispartof><rights>2024 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-1731907721a7b0b75e6c8b744b8c8c31d4c2a03cd581bf54592f35c705e45d4f3</citedby><cites>FETCH-LOGICAL-c323t-1731907721a7b0b75e6c8b744b8c8c31d4c2a03cd581bf54592f35c705e45d4f3</cites><orcidid>0000-0003-0985-4806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38373410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Yao</creatorcontrib><creatorcontrib>Liu, Shenghong</creatorcontrib><creatorcontrib>Ma, Xiaoxi</creatorcontrib><creatorcontrib>Guo, Shuyang</creatorcontrib><creatorcontrib>Zhai, Baoxing</creatorcontrib><creatorcontrib>Zhang, Zihan</creatorcontrib><creatorcontrib>Li, Manshi</creatorcontrib><creatorcontrib>Yu, Yimeng</creatorcontrib><creatorcontrib>Hu, Wenhua</creatorcontrib><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Kapitonov, Yury</creatorcontrib><creatorcontrib>Han, Junbo</creatorcontrib><creatorcontrib>Wu, Jinsong</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Zhai, Tianyou</creatorcontrib><title>Intrinsic Defect-Driven Synergistic Synaptic Heterostructures for Gate-Free Neuromorphic Phototransistors</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The optoelectronic synaptic devices based on two-dimensional (2D) materials offer great advances for future neuromorphic visual systems with dramatically improved integration density and power efficiency. The effective charge capture and retention are considered as one vital prerequisite to realizing the synaptic memory function. However, the current 2D synaptic devices are predominantly relied on materials with artificially-engineered defects or intricate gate-controlled architectures to realize the charge trapping process. These approaches, unfortunately, suffer from the degradation of pristine materials, rapid device failure, and unnecessary complication of device structures. To address these challenges, an innovative gate-free heterostructure paradigm is introduced herein. The heterostructure presents a distinctive dome-like morphology wherein a defect-rich Fe S core is enveloped snugly by a curved MoS dome shell (Fe S @MoS ), allowing the realization of effective photocarrier trapping through the intrinsic defects in the adjacent Fe S core. The resultant neuromorphic devices exhibit remarkable light-tunable synaptic behaviors with memory time up to ≈800 s under single optical pulse, thus demonstrating great advances in simulating visual recognition system with significantly improved image recognition efficiency. The emergence of such heterostructures foreshadows a promising trajectory for underpinning future synaptic devices, catalyzing the realization of high-efficiency and intricate visual processing applications.</description><subject>Charge efficiency</subject><subject>Defects</subject><subject>Devices</subject><subject>Domes</subject><subject>Efficiency</subject><subject>Heterostructures</subject><subject>Molybdenum disulfide</subject><subject>Neuromorphic computing</subject><subject>Optoelectronic devices</subject><subject>Phototransistors</subject><subject>Power efficiency</subject><subject>System effectiveness</subject><subject>Trapping</subject><subject>Two dimensional materials</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkUlLxEAQhRtRdFyuHiXgxUvG6i1JH8VxA1FBPYdOp6KRSXqs7gj-e3twOXiqgvrqUfUeY4cc5hxAnNp2sHMBQoIxCjbYjGvBcwVGb7IZGKlzU6hqh-2G8AYApoBim-3ISpZScZix_maM1I-hd9kCO3QxX1D_gWP2-DkivfQhpknq7WrdXGNE8iHS5OJEGLLOU3ZlI-aXhJjd4UR-8LR6TezDq48-kk3aIXoK-2yrs8uABz91jz1fXjydX-e391c352e3uZNCxpyXkhsoS8Ft2UBTaixc1ZRKNZWrnOStcsKCdK2ueNNppY3opHYlaFS6VZ3cYyffuivy7xOGWA99cLhc2hH9FGphRFXpQhqZ0ON_6JufaEzX1RK0KJJhwiRq_k259Hog7OoV9YOlz5pDvQ6hXodQ_4WQFo5-ZKdmwPYP_3VdfgGq34No</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Deng, Yao</creator><creator>Liu, Shenghong</creator><creator>Ma, Xiaoxi</creator><creator>Guo, Shuyang</creator><creator>Zhai, Baoxing</creator><creator>Zhang, Zihan</creator><creator>Li, Manshi</creator><creator>Yu, Yimeng</creator><creator>Hu, Wenhua</creator><creator>Yang, Hui</creator><creator>Kapitonov, Yury</creator><creator>Han, Junbo</creator><creator>Wu, Jinsong</creator><creator>Li, Yuan</creator><creator>Zhai, Tianyou</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0985-4806</orcidid></search><sort><creationdate>20240501</creationdate><title>Intrinsic Defect-Driven Synergistic Synaptic Heterostructures for Gate-Free Neuromorphic Phototransistors</title><author>Deng, Yao ; Liu, Shenghong ; Ma, Xiaoxi ; Guo, Shuyang ; Zhai, Baoxing ; Zhang, Zihan ; Li, Manshi ; Yu, Yimeng ; Hu, Wenhua ; Yang, Hui ; Kapitonov, Yury ; Han, Junbo ; Wu, Jinsong ; Li, Yuan ; Zhai, Tianyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-1731907721a7b0b75e6c8b744b8c8c31d4c2a03cd581bf54592f35c705e45d4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Charge efficiency</topic><topic>Defects</topic><topic>Devices</topic><topic>Domes</topic><topic>Efficiency</topic><topic>Heterostructures</topic><topic>Molybdenum disulfide</topic><topic>Neuromorphic computing</topic><topic>Optoelectronic devices</topic><topic>Phototransistors</topic><topic>Power efficiency</topic><topic>System effectiveness</topic><topic>Trapping</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Yao</creatorcontrib><creatorcontrib>Liu, Shenghong</creatorcontrib><creatorcontrib>Ma, Xiaoxi</creatorcontrib><creatorcontrib>Guo, Shuyang</creatorcontrib><creatorcontrib>Zhai, Baoxing</creatorcontrib><creatorcontrib>Zhang, Zihan</creatorcontrib><creatorcontrib>Li, Manshi</creatorcontrib><creatorcontrib>Yu, Yimeng</creatorcontrib><creatorcontrib>Hu, Wenhua</creatorcontrib><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Kapitonov, Yury</creatorcontrib><creatorcontrib>Han, Junbo</creatorcontrib><creatorcontrib>Wu, Jinsong</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Zhai, Tianyou</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Yao</au><au>Liu, Shenghong</au><au>Ma, Xiaoxi</au><au>Guo, Shuyang</au><au>Zhai, Baoxing</au><au>Zhang, Zihan</au><au>Li, Manshi</au><au>Yu, Yimeng</au><au>Hu, Wenhua</au><au>Yang, Hui</au><au>Kapitonov, Yury</au><au>Han, Junbo</au><au>Wu, Jinsong</au><au>Li, Yuan</au><au>Zhai, Tianyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic Defect-Driven Synergistic Synaptic Heterostructures for Gate-Free Neuromorphic Phototransistors</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>36</volume><issue>19</issue><spage>e2309940</spage><epage>e2309940</epage><pages>e2309940-e2309940</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The optoelectronic synaptic devices based on two-dimensional (2D) materials offer great advances for future neuromorphic visual systems with dramatically improved integration density and power efficiency. The effective charge capture and retention are considered as one vital prerequisite to realizing the synaptic memory function. However, the current 2D synaptic devices are predominantly relied on materials with artificially-engineered defects or intricate gate-controlled architectures to realize the charge trapping process. These approaches, unfortunately, suffer from the degradation of pristine materials, rapid device failure, and unnecessary complication of device structures. To address these challenges, an innovative gate-free heterostructure paradigm is introduced herein. The heterostructure presents a distinctive dome-like morphology wherein a defect-rich Fe S core is enveloped snugly by a curved MoS dome shell (Fe S @MoS ), allowing the realization of effective photocarrier trapping through the intrinsic defects in the adjacent Fe S core. The resultant neuromorphic devices exhibit remarkable light-tunable synaptic behaviors with memory time up to ≈800 s under single optical pulse, thus demonstrating great advances in simulating visual recognition system with significantly improved image recognition efficiency. The emergence of such heterostructures foreshadows a promising trajectory for underpinning future synaptic devices, catalyzing the realization of high-efficiency and intricate visual processing applications.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38373410</pmid><doi>10.1002/adma.202309940</doi><orcidid>https://orcid.org/0000-0003-0985-4806</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-05, Vol.36 (19), p.e2309940-e2309940
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_2928856393
source Wiley-Blackwell Read & Publish Collection
subjects Charge efficiency
Defects
Devices
Domes
Efficiency
Heterostructures
Molybdenum disulfide
Neuromorphic computing
Optoelectronic devices
Phototransistors
Power efficiency
System effectiveness
Trapping
Two dimensional materials
title Intrinsic Defect-Driven Synergistic Synaptic Heterostructures for Gate-Free Neuromorphic Phototransistors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A59%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20Defect-Driven%20Synergistic%20Synaptic%20Heterostructures%20for%20Gate-Free%20Neuromorphic%20Phototransistors&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Deng,%20Yao&rft.date=2024-05-01&rft.volume=36&rft.issue=19&rft.spage=e2309940&rft.epage=e2309940&rft.pages=e2309940-e2309940&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202309940&rft_dat=%3Cproquest_cross%3E3052600029%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-1731907721a7b0b75e6c8b744b8c8c31d4c2a03cd581bf54592f35c705e45d4f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3052600029&rft_id=info:pmid/38373410&rfr_iscdi=true