Loading…
Intrinsic Defect-Driven Synergistic Synaptic Heterostructures for Gate-Free Neuromorphic Phototransistors
The optoelectronic synaptic devices based on two-dimensional (2D) materials offer great advances for future neuromorphic visual systems with dramatically improved integration density and power efficiency. The effective charge capture and retention are considered as one vital prerequisite to realizin...
Saved in:
Published in: | Advanced materials (Weinheim) 2024-05, Vol.36 (19), p.e2309940-e2309940 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c323t-1731907721a7b0b75e6c8b744b8c8c31d4c2a03cd581bf54592f35c705e45d4f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c323t-1731907721a7b0b75e6c8b744b8c8c31d4c2a03cd581bf54592f35c705e45d4f3 |
container_end_page | e2309940 |
container_issue | 19 |
container_start_page | e2309940 |
container_title | Advanced materials (Weinheim) |
container_volume | 36 |
creator | Deng, Yao Liu, Shenghong Ma, Xiaoxi Guo, Shuyang Zhai, Baoxing Zhang, Zihan Li, Manshi Yu, Yimeng Hu, Wenhua Yang, Hui Kapitonov, Yury Han, Junbo Wu, Jinsong Li, Yuan Zhai, Tianyou |
description | The optoelectronic synaptic devices based on two-dimensional (2D) materials offer great advances for future neuromorphic visual systems with dramatically improved integration density and power efficiency. The effective charge capture and retention are considered as one vital prerequisite to realizing the synaptic memory function. However, the current 2D synaptic devices are predominantly relied on materials with artificially-engineered defects or intricate gate-controlled architectures to realize the charge trapping process. These approaches, unfortunately, suffer from the degradation of pristine materials, rapid device failure, and unnecessary complication of device structures. To address these challenges, an innovative gate-free heterostructure paradigm is introduced herein. The heterostructure presents a distinctive dome-like morphology wherein a defect-rich Fe
S
core is enveloped snugly by a curved MoS
dome shell (Fe
S
@MoS
), allowing the realization of effective photocarrier trapping through the intrinsic defects in the adjacent Fe
S
core. The resultant neuromorphic devices exhibit remarkable light-tunable synaptic behaviors with memory time up to ≈800 s under single optical pulse, thus demonstrating great advances in simulating visual recognition system with significantly improved image recognition efficiency. The emergence of such heterostructures foreshadows a promising trajectory for underpinning future synaptic devices, catalyzing the realization of high-efficiency and intricate visual processing applications. |
doi_str_mv | 10.1002/adma.202309940 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2928856393</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3052600029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-1731907721a7b0b75e6c8b744b8c8c31d4c2a03cd581bf54592f35c705e45d4f3</originalsourceid><addsrcrecordid>eNpdkUlLxEAQhRtRdFyuHiXgxUvG6i1JH8VxA1FBPYdOp6KRSXqs7gj-e3twOXiqgvrqUfUeY4cc5hxAnNp2sHMBQoIxCjbYjGvBcwVGb7IZGKlzU6hqh-2G8AYApoBim-3ISpZScZix_maM1I-hd9kCO3QxX1D_gWP2-DkivfQhpknq7WrdXGNE8iHS5OJEGLLOU3ZlI-aXhJjd4UR-8LR6TezDq48-kk3aIXoK-2yrs8uABz91jz1fXjydX-e391c352e3uZNCxpyXkhsoS8Ft2UBTaixc1ZRKNZWrnOStcsKCdK2ueNNppY3opHYlaFS6VZ3cYyffuivy7xOGWA99cLhc2hH9FGphRFXpQhqZ0ON_6JufaEzX1RK0KJJhwiRq_k259Hog7OoV9YOlz5pDvQ6hXodQ_4WQFo5-ZKdmwPYP_3VdfgGq34No</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3052600029</pqid></control><display><type>article</type><title>Intrinsic Defect-Driven Synergistic Synaptic Heterostructures for Gate-Free Neuromorphic Phototransistors</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Deng, Yao ; Liu, Shenghong ; Ma, Xiaoxi ; Guo, Shuyang ; Zhai, Baoxing ; Zhang, Zihan ; Li, Manshi ; Yu, Yimeng ; Hu, Wenhua ; Yang, Hui ; Kapitonov, Yury ; Han, Junbo ; Wu, Jinsong ; Li, Yuan ; Zhai, Tianyou</creator><creatorcontrib>Deng, Yao ; Liu, Shenghong ; Ma, Xiaoxi ; Guo, Shuyang ; Zhai, Baoxing ; Zhang, Zihan ; Li, Manshi ; Yu, Yimeng ; Hu, Wenhua ; Yang, Hui ; Kapitonov, Yury ; Han, Junbo ; Wu, Jinsong ; Li, Yuan ; Zhai, Tianyou</creatorcontrib><description>The optoelectronic synaptic devices based on two-dimensional (2D) materials offer great advances for future neuromorphic visual systems with dramatically improved integration density and power efficiency. The effective charge capture and retention are considered as one vital prerequisite to realizing the synaptic memory function. However, the current 2D synaptic devices are predominantly relied on materials with artificially-engineered defects or intricate gate-controlled architectures to realize the charge trapping process. These approaches, unfortunately, suffer from the degradation of pristine materials, rapid device failure, and unnecessary complication of device structures. To address these challenges, an innovative gate-free heterostructure paradigm is introduced herein. The heterostructure presents a distinctive dome-like morphology wherein a defect-rich Fe
S
core is enveloped snugly by a curved MoS
dome shell (Fe
S
@MoS
), allowing the realization of effective photocarrier trapping through the intrinsic defects in the adjacent Fe
S
core. The resultant neuromorphic devices exhibit remarkable light-tunable synaptic behaviors with memory time up to ≈800 s under single optical pulse, thus demonstrating great advances in simulating visual recognition system with significantly improved image recognition efficiency. The emergence of such heterostructures foreshadows a promising trajectory for underpinning future synaptic devices, catalyzing the realization of high-efficiency and intricate visual processing applications.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202309940</identifier><identifier>PMID: 38373410</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Charge efficiency ; Defects ; Devices ; Domes ; Efficiency ; Heterostructures ; Molybdenum disulfide ; Neuromorphic computing ; Optoelectronic devices ; Phototransistors ; Power efficiency ; System effectiveness ; Trapping ; Two dimensional materials</subject><ispartof>Advanced materials (Weinheim), 2024-05, Vol.36 (19), p.e2309940-e2309940</ispartof><rights>2024 Wiley-VCH GmbH.</rights><rights>2024 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-1731907721a7b0b75e6c8b744b8c8c31d4c2a03cd581bf54592f35c705e45d4f3</citedby><cites>FETCH-LOGICAL-c323t-1731907721a7b0b75e6c8b744b8c8c31d4c2a03cd581bf54592f35c705e45d4f3</cites><orcidid>0000-0003-0985-4806</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38373410$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Yao</creatorcontrib><creatorcontrib>Liu, Shenghong</creatorcontrib><creatorcontrib>Ma, Xiaoxi</creatorcontrib><creatorcontrib>Guo, Shuyang</creatorcontrib><creatorcontrib>Zhai, Baoxing</creatorcontrib><creatorcontrib>Zhang, Zihan</creatorcontrib><creatorcontrib>Li, Manshi</creatorcontrib><creatorcontrib>Yu, Yimeng</creatorcontrib><creatorcontrib>Hu, Wenhua</creatorcontrib><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Kapitonov, Yury</creatorcontrib><creatorcontrib>Han, Junbo</creatorcontrib><creatorcontrib>Wu, Jinsong</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Zhai, Tianyou</creatorcontrib><title>Intrinsic Defect-Driven Synergistic Synaptic Heterostructures for Gate-Free Neuromorphic Phototransistors</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>The optoelectronic synaptic devices based on two-dimensional (2D) materials offer great advances for future neuromorphic visual systems with dramatically improved integration density and power efficiency. The effective charge capture and retention are considered as one vital prerequisite to realizing the synaptic memory function. However, the current 2D synaptic devices are predominantly relied on materials with artificially-engineered defects or intricate gate-controlled architectures to realize the charge trapping process. These approaches, unfortunately, suffer from the degradation of pristine materials, rapid device failure, and unnecessary complication of device structures. To address these challenges, an innovative gate-free heterostructure paradigm is introduced herein. The heterostructure presents a distinctive dome-like morphology wherein a defect-rich Fe
S
core is enveloped snugly by a curved MoS
dome shell (Fe
S
@MoS
), allowing the realization of effective photocarrier trapping through the intrinsic defects in the adjacent Fe
S
core. The resultant neuromorphic devices exhibit remarkable light-tunable synaptic behaviors with memory time up to ≈800 s under single optical pulse, thus demonstrating great advances in simulating visual recognition system with significantly improved image recognition efficiency. The emergence of such heterostructures foreshadows a promising trajectory for underpinning future synaptic devices, catalyzing the realization of high-efficiency and intricate visual processing applications.</description><subject>Charge efficiency</subject><subject>Defects</subject><subject>Devices</subject><subject>Domes</subject><subject>Efficiency</subject><subject>Heterostructures</subject><subject>Molybdenum disulfide</subject><subject>Neuromorphic computing</subject><subject>Optoelectronic devices</subject><subject>Phototransistors</subject><subject>Power efficiency</subject><subject>System effectiveness</subject><subject>Trapping</subject><subject>Two dimensional materials</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkUlLxEAQhRtRdFyuHiXgxUvG6i1JH8VxA1FBPYdOp6KRSXqs7gj-e3twOXiqgvrqUfUeY4cc5hxAnNp2sHMBQoIxCjbYjGvBcwVGb7IZGKlzU6hqh-2G8AYApoBim-3ISpZScZix_maM1I-hd9kCO3QxX1D_gWP2-DkivfQhpknq7WrdXGNE8iHS5OJEGLLOU3ZlI-aXhJjd4UR-8LR6TezDq48-kk3aIXoK-2yrs8uABz91jz1fXjydX-e391c352e3uZNCxpyXkhsoS8Ft2UBTaixc1ZRKNZWrnOStcsKCdK2ueNNppY3opHYlaFS6VZ3cYyffuivy7xOGWA99cLhc2hH9FGphRFXpQhqZ0ON_6JufaEzX1RK0KJJhwiRq_k259Hog7OoV9YOlz5pDvQ6hXodQ_4WQFo5-ZKdmwPYP_3VdfgGq34No</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Deng, Yao</creator><creator>Liu, Shenghong</creator><creator>Ma, Xiaoxi</creator><creator>Guo, Shuyang</creator><creator>Zhai, Baoxing</creator><creator>Zhang, Zihan</creator><creator>Li, Manshi</creator><creator>Yu, Yimeng</creator><creator>Hu, Wenhua</creator><creator>Yang, Hui</creator><creator>Kapitonov, Yury</creator><creator>Han, Junbo</creator><creator>Wu, Jinsong</creator><creator>Li, Yuan</creator><creator>Zhai, Tianyou</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0985-4806</orcidid></search><sort><creationdate>20240501</creationdate><title>Intrinsic Defect-Driven Synergistic Synaptic Heterostructures for Gate-Free Neuromorphic Phototransistors</title><author>Deng, Yao ; Liu, Shenghong ; Ma, Xiaoxi ; Guo, Shuyang ; Zhai, Baoxing ; Zhang, Zihan ; Li, Manshi ; Yu, Yimeng ; Hu, Wenhua ; Yang, Hui ; Kapitonov, Yury ; Han, Junbo ; Wu, Jinsong ; Li, Yuan ; Zhai, Tianyou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-1731907721a7b0b75e6c8b744b8c8c31d4c2a03cd581bf54592f35c705e45d4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Charge efficiency</topic><topic>Defects</topic><topic>Devices</topic><topic>Domes</topic><topic>Efficiency</topic><topic>Heterostructures</topic><topic>Molybdenum disulfide</topic><topic>Neuromorphic computing</topic><topic>Optoelectronic devices</topic><topic>Phototransistors</topic><topic>Power efficiency</topic><topic>System effectiveness</topic><topic>Trapping</topic><topic>Two dimensional materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Yao</creatorcontrib><creatorcontrib>Liu, Shenghong</creatorcontrib><creatorcontrib>Ma, Xiaoxi</creatorcontrib><creatorcontrib>Guo, Shuyang</creatorcontrib><creatorcontrib>Zhai, Baoxing</creatorcontrib><creatorcontrib>Zhang, Zihan</creatorcontrib><creatorcontrib>Li, Manshi</creatorcontrib><creatorcontrib>Yu, Yimeng</creatorcontrib><creatorcontrib>Hu, Wenhua</creatorcontrib><creatorcontrib>Yang, Hui</creatorcontrib><creatorcontrib>Kapitonov, Yury</creatorcontrib><creatorcontrib>Han, Junbo</creatorcontrib><creatorcontrib>Wu, Jinsong</creatorcontrib><creatorcontrib>Li, Yuan</creatorcontrib><creatorcontrib>Zhai, Tianyou</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Yao</au><au>Liu, Shenghong</au><au>Ma, Xiaoxi</au><au>Guo, Shuyang</au><au>Zhai, Baoxing</au><au>Zhang, Zihan</au><au>Li, Manshi</au><au>Yu, Yimeng</au><au>Hu, Wenhua</au><au>Yang, Hui</au><au>Kapitonov, Yury</au><au>Han, Junbo</au><au>Wu, Jinsong</au><au>Li, Yuan</au><au>Zhai, Tianyou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intrinsic Defect-Driven Synergistic Synaptic Heterostructures for Gate-Free Neuromorphic Phototransistors</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-05-01</date><risdate>2024</risdate><volume>36</volume><issue>19</issue><spage>e2309940</spage><epage>e2309940</epage><pages>e2309940-e2309940</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>The optoelectronic synaptic devices based on two-dimensional (2D) materials offer great advances for future neuromorphic visual systems with dramatically improved integration density and power efficiency. The effective charge capture and retention are considered as one vital prerequisite to realizing the synaptic memory function. However, the current 2D synaptic devices are predominantly relied on materials with artificially-engineered defects or intricate gate-controlled architectures to realize the charge trapping process. These approaches, unfortunately, suffer from the degradation of pristine materials, rapid device failure, and unnecessary complication of device structures. To address these challenges, an innovative gate-free heterostructure paradigm is introduced herein. The heterostructure presents a distinctive dome-like morphology wherein a defect-rich Fe
S
core is enveloped snugly by a curved MoS
dome shell (Fe
S
@MoS
), allowing the realization of effective photocarrier trapping through the intrinsic defects in the adjacent Fe
S
core. The resultant neuromorphic devices exhibit remarkable light-tunable synaptic behaviors with memory time up to ≈800 s under single optical pulse, thus demonstrating great advances in simulating visual recognition system with significantly improved image recognition efficiency. The emergence of such heterostructures foreshadows a promising trajectory for underpinning future synaptic devices, catalyzing the realization of high-efficiency and intricate visual processing applications.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38373410</pmid><doi>10.1002/adma.202309940</doi><orcidid>https://orcid.org/0000-0003-0985-4806</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2024-05, Vol.36 (19), p.e2309940-e2309940 |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_2928856393 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Charge efficiency Defects Devices Domes Efficiency Heterostructures Molybdenum disulfide Neuromorphic computing Optoelectronic devices Phototransistors Power efficiency System effectiveness Trapping Two dimensional materials |
title | Intrinsic Defect-Driven Synergistic Synaptic Heterostructures for Gate-Free Neuromorphic Phototransistors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A59%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intrinsic%20Defect-Driven%20Synergistic%20Synaptic%20Heterostructures%20for%20Gate-Free%20Neuromorphic%20Phototransistors&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Deng,%20Yao&rft.date=2024-05-01&rft.volume=36&rft.issue=19&rft.spage=e2309940&rft.epage=e2309940&rft.pages=e2309940-e2309940&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202309940&rft_dat=%3Cproquest_cross%3E3052600029%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c323t-1731907721a7b0b75e6c8b744b8c8c31d4c2a03cd581bf54592f35c705e45d4f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3052600029&rft_id=info:pmid/38373410&rfr_iscdi=true |