Loading…

PEGA: A Privacy-Preserving Genetic Algorithm for Combinatorial Optimization

Evolutionary algorithms (EAs), such as the genetic algorithm (GA), offer an elegant way to handle combinatorial optimization problems (COPs). However, limited by expertise and resources, most users lack the capability to implement EAs for solving COPs. An intuitive and promising solution is to outso...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics 2024-06, Vol.54 (6), p.3638-3651
Main Authors: Zhao, Bowen, Chen, Wei-Neng, Wei, Feng-Feng, Liu, Ximeng, Pei, Qingqi, Zhang, Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c350t-a0c414b19142e23406bc3769072f65f2cd4b96bd71433ee69d12b79b4e97ceb93
cites cdi_FETCH-LOGICAL-c350t-a0c414b19142e23406bc3769072f65f2cd4b96bd71433ee69d12b79b4e97ceb93
container_end_page 3651
container_issue 6
container_start_page 3638
container_title IEEE transactions on cybernetics
container_volume 54
creator Zhao, Bowen
Chen, Wei-Neng
Wei, Feng-Feng
Liu, Ximeng
Pei, Qingqi
Zhang, Jun
description Evolutionary algorithms (EAs), such as the genetic algorithm (GA), offer an elegant way to handle combinatorial optimization problems (COPs). However, limited by expertise and resources, most users lack the capability to implement EAs for solving COPs. An intuitive and promising solution is to outsource evolutionary operations to a cloud server, however, it poses privacy concerns. To this end, this article proposes a novel computing paradigm called evolutionary computation as a service (ECaaS), where a cloud server renders evolutionary computation services for users while ensuring their privacy. Following the concept of ECaaS, this article presents privacy-preserving genetic algorithm (PEGA), a privacy-preserving GA designed specifically for COPs. PEGA enables users, regardless of their domain expertise or resource availability, to outsource COPs to the cloud server that holds a competitive GA and approximates the optimal solution while safeguarding privacy. Notably, PEGA features the following characteristics. First, PEGA empowers users without domain expertise or sufficient resources to solve COPs effectively. Second, PEGA protects the privacy of users by preventing the leakage of optimization problem details. Third, PEGA performs comparably to the conventional GA when approximating the optimal solution. To realize its functionality, we implement PEGA falling in a twin-server architecture and evaluate it on two widely known COPs: 1) the traveling Salesman problem (TSP) and 2) the 0/1 knapsack problem (KP). Particularly, we utilize encryption cryptography to protect users' privacy and carefully design a suite of secure computing protocols to support evolutionary operators of GA on encrypted chromosomes. Privacy analysis demonstrates that PEGA successfully preserves the confidentiality of COP contents. Experimental evaluation results on several TSP datasets and KP datasets reveal that PEGA performs equivalently to the conventional GA in approximating the optimal solution.
doi_str_mv 10.1109/TCYB.2023.3346863
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_2929033210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10398448</ieee_id><sourcerecordid>3062736353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-a0c414b19142e23406bc3769072f65f2cd4b96bd71433ee69d12b79b4e97ceb93</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoKtUfIIgsePGyNclksxtvtdQqFtpDPXgKm-ysRvajJltBf71bWkWcywzDMy_DQ8gZo0PGqLpejp9vh5xyGAIImUnYI8ecySzmPE32f2eZHpHTEN5oX1m_UtkhOYKMswSAHpPHxWQ6uolG0cK7j9x-xguPAf2Ha16iKTbYORuNqpfWu-61jsrWR-O2Nq7Ju36VV9F81bnafeWda5sTclDmVcDTXR-Qp7vJcnwfz-bTh_FoFltIaBfn1AomDFNMcOQgqDQWUqloykuZlNwWwihpipQJAESpCsZNqoxAlVo0Cgbkapu78u37GkOnaxcsVlXeYLsOmiuuKABntEcv_6Fv7do3_XcaqOQpSOg9DAjbUta3IXgs9cq7OvefmlG9ka03svVGtt7J7m8udslrU2Pxe_GjtgfOt4BDxD-BoDIhMvgGCbyA0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3062736353</pqid></control><display><type>article</type><title>PEGA: A Privacy-Preserving Genetic Algorithm for Combinatorial Optimization</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Zhao, Bowen ; Chen, Wei-Neng ; Wei, Feng-Feng ; Liu, Ximeng ; Pei, Qingqi ; Zhang, Jun</creator><creatorcontrib>Zhao, Bowen ; Chen, Wei-Neng ; Wei, Feng-Feng ; Liu, Ximeng ; Pei, Qingqi ; Zhang, Jun</creatorcontrib><description>Evolutionary algorithms (EAs), such as the genetic algorithm (GA), offer an elegant way to handle combinatorial optimization problems (COPs). However, limited by expertise and resources, most users lack the capability to implement EAs for solving COPs. An intuitive and promising solution is to outsource evolutionary operations to a cloud server, however, it poses privacy concerns. To this end, this article proposes a novel computing paradigm called evolutionary computation as a service (ECaaS), where a cloud server renders evolutionary computation services for users while ensuring their privacy. Following the concept of ECaaS, this article presents privacy-preserving genetic algorithm (PEGA), a privacy-preserving GA designed specifically for COPs. PEGA enables users, regardless of their domain expertise or resource availability, to outsource COPs to the cloud server that holds a competitive GA and approximates the optimal solution while safeguarding privacy. Notably, PEGA features the following characteristics. First, PEGA empowers users without domain expertise or sufficient resources to solve COPs effectively. Second, PEGA protects the privacy of users by preventing the leakage of optimization problem details. Third, PEGA performs comparably to the conventional GA when approximating the optimal solution. To realize its functionality, we implement PEGA falling in a twin-server architecture and evaluate it on two widely known COPs: 1) the traveling Salesman problem (TSP) and 2) the 0/1 knapsack problem (KP). Particularly, we utilize encryption cryptography to protect users' privacy and carefully design a suite of secure computing protocols to support evolutionary operators of GA on encrypted chromosomes. Privacy analysis demonstrates that PEGA successfully preserves the confidentiality of COP contents. Experimental evaluation results on several TSP datasets and KP datasets reveal that PEGA performs equivalently to the conventional GA in approximating the optimal solution.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2023.3346863</identifier><identifier>PMID: 38215330</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Approximation ; Cloud computing ; Combinatorial analysis ; Combinatorial optimization ; Datasets ; Encryption ; Evolutionary algorithms ; Evolutionary computation ; evolutionary computation as a service (ECaaS) ; Genetic algorithms ; Knapsack problem ; Optimization ; Privacy ; privacy protection ; secure computing ; Servers ; Social factors ; Statistics ; Traveling salesman problem</subject><ispartof>IEEE transactions on cybernetics, 2024-06, Vol.54 (6), p.3638-3651</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-a0c414b19142e23406bc3769072f65f2cd4b96bd71433ee69d12b79b4e97ceb93</citedby><cites>FETCH-LOGICAL-c350t-a0c414b19142e23406bc3769072f65f2cd4b96bd71433ee69d12b79b4e97ceb93</cites><orcidid>0000-0003-0843-5802 ; 0000-0001-9864-9729 ; 0009-0003-4708-8791 ; 0000-0001-7601-5434 ; 0000-0002-4238-3295</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10398448$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38215330$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Bowen</creatorcontrib><creatorcontrib>Chen, Wei-Neng</creatorcontrib><creatorcontrib>Wei, Feng-Feng</creatorcontrib><creatorcontrib>Liu, Ximeng</creatorcontrib><creatorcontrib>Pei, Qingqi</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><title>PEGA: A Privacy-Preserving Genetic Algorithm for Combinatorial Optimization</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>Evolutionary algorithms (EAs), such as the genetic algorithm (GA), offer an elegant way to handle combinatorial optimization problems (COPs). However, limited by expertise and resources, most users lack the capability to implement EAs for solving COPs. An intuitive and promising solution is to outsource evolutionary operations to a cloud server, however, it poses privacy concerns. To this end, this article proposes a novel computing paradigm called evolutionary computation as a service (ECaaS), where a cloud server renders evolutionary computation services for users while ensuring their privacy. Following the concept of ECaaS, this article presents privacy-preserving genetic algorithm (PEGA), a privacy-preserving GA designed specifically for COPs. PEGA enables users, regardless of their domain expertise or resource availability, to outsource COPs to the cloud server that holds a competitive GA and approximates the optimal solution while safeguarding privacy. Notably, PEGA features the following characteristics. First, PEGA empowers users without domain expertise or sufficient resources to solve COPs effectively. Second, PEGA protects the privacy of users by preventing the leakage of optimization problem details. Third, PEGA performs comparably to the conventional GA when approximating the optimal solution. To realize its functionality, we implement PEGA falling in a twin-server architecture and evaluate it on two widely known COPs: 1) the traveling Salesman problem (TSP) and 2) the 0/1 knapsack problem (KP). Particularly, we utilize encryption cryptography to protect users' privacy and carefully design a suite of secure computing protocols to support evolutionary operators of GA on encrypted chromosomes. Privacy analysis demonstrates that PEGA successfully preserves the confidentiality of COP contents. Experimental evaluation results on several TSP datasets and KP datasets reveal that PEGA performs equivalently to the conventional GA in approximating the optimal solution.</description><subject>Approximation</subject><subject>Cloud computing</subject><subject>Combinatorial analysis</subject><subject>Combinatorial optimization</subject><subject>Datasets</subject><subject>Encryption</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>evolutionary computation as a service (ECaaS)</subject><subject>Genetic algorithms</subject><subject>Knapsack problem</subject><subject>Optimization</subject><subject>Privacy</subject><subject>privacy protection</subject><subject>secure computing</subject><subject>Servers</subject><subject>Social factors</subject><subject>Statistics</subject><subject>Traveling salesman problem</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoKtUfIIgsePGyNclksxtvtdQqFtpDPXgKm-ysRvajJltBf71bWkWcywzDMy_DQ8gZo0PGqLpejp9vh5xyGAIImUnYI8ecySzmPE32f2eZHpHTEN5oX1m_UtkhOYKMswSAHpPHxWQ6uolG0cK7j9x-xguPAf2Ha16iKTbYORuNqpfWu-61jsrWR-O2Nq7Ju36VV9F81bnafeWda5sTclDmVcDTXR-Qp7vJcnwfz-bTh_FoFltIaBfn1AomDFNMcOQgqDQWUqloykuZlNwWwihpipQJAESpCsZNqoxAlVo0Cgbkapu78u37GkOnaxcsVlXeYLsOmiuuKABntEcv_6Fv7do3_XcaqOQpSOg9DAjbUta3IXgs9cq7OvefmlG9ka03svVGtt7J7m8udslrU2Pxe_GjtgfOt4BDxD-BoDIhMvgGCbyA0A</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Zhao, Bowen</creator><creator>Chen, Wei-Neng</creator><creator>Wei, Feng-Feng</creator><creator>Liu, Ximeng</creator><creator>Pei, Qingqi</creator><creator>Zhang, Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0843-5802</orcidid><orcidid>https://orcid.org/0000-0001-9864-9729</orcidid><orcidid>https://orcid.org/0009-0003-4708-8791</orcidid><orcidid>https://orcid.org/0000-0001-7601-5434</orcidid><orcidid>https://orcid.org/0000-0002-4238-3295</orcidid></search><sort><creationdate>20240601</creationdate><title>PEGA: A Privacy-Preserving Genetic Algorithm for Combinatorial Optimization</title><author>Zhao, Bowen ; Chen, Wei-Neng ; Wei, Feng-Feng ; Liu, Ximeng ; Pei, Qingqi ; Zhang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-a0c414b19142e23406bc3769072f65f2cd4b96bd71433ee69d12b79b4e97ceb93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Approximation</topic><topic>Cloud computing</topic><topic>Combinatorial analysis</topic><topic>Combinatorial optimization</topic><topic>Datasets</topic><topic>Encryption</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>evolutionary computation as a service (ECaaS)</topic><topic>Genetic algorithms</topic><topic>Knapsack problem</topic><topic>Optimization</topic><topic>Privacy</topic><topic>privacy protection</topic><topic>secure computing</topic><topic>Servers</topic><topic>Social factors</topic><topic>Statistics</topic><topic>Traveling salesman problem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Bowen</creatorcontrib><creatorcontrib>Chen, Wei-Neng</creatorcontrib><creatorcontrib>Wei, Feng-Feng</creatorcontrib><creatorcontrib>Liu, Ximeng</creatorcontrib><creatorcontrib>Pei, Qingqi</creatorcontrib><creatorcontrib>Zhang, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Bowen</au><au>Chen, Wei-Neng</au><au>Wei, Feng-Feng</au><au>Liu, Ximeng</au><au>Pei, Qingqi</au><au>Zhang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PEGA: A Privacy-Preserving Genetic Algorithm for Combinatorial Optimization</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>54</volume><issue>6</issue><spage>3638</spage><epage>3651</epage><pages>3638-3651</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Evolutionary algorithms (EAs), such as the genetic algorithm (GA), offer an elegant way to handle combinatorial optimization problems (COPs). However, limited by expertise and resources, most users lack the capability to implement EAs for solving COPs. An intuitive and promising solution is to outsource evolutionary operations to a cloud server, however, it poses privacy concerns. To this end, this article proposes a novel computing paradigm called evolutionary computation as a service (ECaaS), where a cloud server renders evolutionary computation services for users while ensuring their privacy. Following the concept of ECaaS, this article presents privacy-preserving genetic algorithm (PEGA), a privacy-preserving GA designed specifically for COPs. PEGA enables users, regardless of their domain expertise or resource availability, to outsource COPs to the cloud server that holds a competitive GA and approximates the optimal solution while safeguarding privacy. Notably, PEGA features the following characteristics. First, PEGA empowers users without domain expertise or sufficient resources to solve COPs effectively. Second, PEGA protects the privacy of users by preventing the leakage of optimization problem details. Third, PEGA performs comparably to the conventional GA when approximating the optimal solution. To realize its functionality, we implement PEGA falling in a twin-server architecture and evaluate it on two widely known COPs: 1) the traveling Salesman problem (TSP) and 2) the 0/1 knapsack problem (KP). Particularly, we utilize encryption cryptography to protect users' privacy and carefully design a suite of secure computing protocols to support evolutionary operators of GA on encrypted chromosomes. Privacy analysis demonstrates that PEGA successfully preserves the confidentiality of COP contents. Experimental evaluation results on several TSP datasets and KP datasets reveal that PEGA performs equivalently to the conventional GA in approximating the optimal solution.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>38215330</pmid><doi>10.1109/TCYB.2023.3346863</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-0843-5802</orcidid><orcidid>https://orcid.org/0000-0001-9864-9729</orcidid><orcidid>https://orcid.org/0009-0003-4708-8791</orcidid><orcidid>https://orcid.org/0000-0001-7601-5434</orcidid><orcidid>https://orcid.org/0000-0002-4238-3295</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2024-06, Vol.54 (6), p.3638-3651
issn 2168-2267
2168-2275
language eng
recordid cdi_proquest_miscellaneous_2929033210
source IEEE Electronic Library (IEL) Journals
subjects Approximation
Cloud computing
Combinatorial analysis
Combinatorial optimization
Datasets
Encryption
Evolutionary algorithms
Evolutionary computation
evolutionary computation as a service (ECaaS)
Genetic algorithms
Knapsack problem
Optimization
Privacy
privacy protection
secure computing
Servers
Social factors
Statistics
Traveling salesman problem
title PEGA: A Privacy-Preserving Genetic Algorithm for Combinatorial Optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T00%3A28%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PEGA:%20A%20Privacy-Preserving%20Genetic%20Algorithm%20for%20Combinatorial%20Optimization&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Zhao,%20Bowen&rft.date=2024-06-01&rft.volume=54&rft.issue=6&rft.spage=3638&rft.epage=3651&rft.pages=3638-3651&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2023.3346863&rft_dat=%3Cproquest_pubme%3E3062736353%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-a0c414b19142e23406bc3769072f65f2cd4b96bd71433ee69d12b79b4e97ceb93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3062736353&rft_id=info:pmid/38215330&rft_ieee_id=10398448&rfr_iscdi=true