Loading…

Correlated noise and critical dimensions

In equilibrium, the Mermin-Wagner theorem prohibits the continuous symmetry breaking for all dimensions d≤2. In this work, we discuss that this limitation can be circumvented in nonequilibrium systems driven by the spatiotemporally long-range anticorrelated noise. We first compute the lower and uppe...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E 2023-12, Vol.108 (6-1), p.064119-064119, Article 064119
Main Author: Ikeda, Harukuni
Format: Article
Language:English
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c255t-839c21a637bf933bd1c113138697358b52d569edc1ca0efe285819a58ceb4823
container_end_page 064119
container_issue 6-1
container_start_page 064119
container_title Physical review. E
container_volume 108
creator Ikeda, Harukuni
description In equilibrium, the Mermin-Wagner theorem prohibits the continuous symmetry breaking for all dimensions d≤2. In this work, we discuss that this limitation can be circumvented in nonequilibrium systems driven by the spatiotemporally long-range anticorrelated noise. We first compute the lower and upper critical dimensions of the O(n) model driven by the spatiotemporally correlated noise by means of the dimensional analysis. Next we consider the spherical model, which corresponds to the large-n limit of the O(n) model and allows us to compute the critical dimensions and critical exponents, analytically. Both results suggest that the critical dimensions increase when the noise is positively correlated in space and time and decrease when anticorrelated. We also report that the spherical model with the correlated noise shows the hyperuniformity and giant number fluctuation even well above the critical point.
doi_str_mv 10.1103/PhysRevE.108.064119
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2929057255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929057255</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-839c21a637bf933bd1c113138697358b52d569edc1ca0efe285819a58ceb4823</originalsourceid><addsrcrecordid>eNo9kEtrwzAQhEVpaUKaX1AoPubiVKu1bOlYQvqAQEvJXcjymqr4kUpOIf--LnmcZhlmduBj7B74EoDj48fXIX7S73oJXC15ngHoKzYVWcFTziVeX-5MTtg8xm_OOeRcFyBu2QSVyDDTOGWLVR8CNXagKul6HymxXZW44AfvbJNUvqUu-r6Ld-ymtk2k-UlnbPu83q5e0837y9vqaZM6IeWQKtROgM2xKGuNWFbgABBQ5bpAqUopKplrqhw4y6kmoaQCbaVyVGZK4Iwtjm93of_ZUxxM66OjprEd9ftohBaay2LcGqN4jLrQxxioNrvgWxsOBrj5h2TOkEZDmSOksfVwGtiXLVWXzhkJ_gFP4mJc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2929057255</pqid></control><display><type>article</type><title>Correlated noise and critical dimensions</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Ikeda, Harukuni</creator><creatorcontrib>Ikeda, Harukuni</creatorcontrib><description>In equilibrium, the Mermin-Wagner theorem prohibits the continuous symmetry breaking for all dimensions d≤2. In this work, we discuss that this limitation can be circumvented in nonequilibrium systems driven by the spatiotemporally long-range anticorrelated noise. We first compute the lower and upper critical dimensions of the O(n) model driven by the spatiotemporally correlated noise by means of the dimensional analysis. Next we consider the spherical model, which corresponds to the large-n limit of the O(n) model and allows us to compute the critical dimensions and critical exponents, analytically. Both results suggest that the critical dimensions increase when the noise is positively correlated in space and time and decrease when anticorrelated. We also report that the spherical model with the correlated noise shows the hyperuniformity and giant number fluctuation even well above the critical point.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.108.064119</identifier><identifier>PMID: 38243493</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2023-12, Vol.108 (6-1), p.064119-064119, Article 064119</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c255t-839c21a637bf933bd1c113138697358b52d569edc1ca0efe285819a58ceb4823</cites><orcidid>0000-0002-5244-125X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38243493$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ikeda, Harukuni</creatorcontrib><title>Correlated noise and critical dimensions</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>In equilibrium, the Mermin-Wagner theorem prohibits the continuous symmetry breaking for all dimensions d≤2. In this work, we discuss that this limitation can be circumvented in nonequilibrium systems driven by the spatiotemporally long-range anticorrelated noise. We first compute the lower and upper critical dimensions of the O(n) model driven by the spatiotemporally correlated noise by means of the dimensional analysis. Next we consider the spherical model, which corresponds to the large-n limit of the O(n) model and allows us to compute the critical dimensions and critical exponents, analytically. Both results suggest that the critical dimensions increase when the noise is positively correlated in space and time and decrease when anticorrelated. We also report that the spherical model with the correlated noise shows the hyperuniformity and giant number fluctuation even well above the critical point.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kEtrwzAQhEVpaUKaX1AoPubiVKu1bOlYQvqAQEvJXcjymqr4kUpOIf--LnmcZhlmduBj7B74EoDj48fXIX7S73oJXC15ngHoKzYVWcFTziVeX-5MTtg8xm_OOeRcFyBu2QSVyDDTOGWLVR8CNXagKul6HymxXZW44AfvbJNUvqUu-r6Ld-ymtk2k-UlnbPu83q5e0837y9vqaZM6IeWQKtROgM2xKGuNWFbgABBQ5bpAqUopKplrqhw4y6kmoaQCbaVyVGZK4Iwtjm93of_ZUxxM66OjprEd9ftohBaay2LcGqN4jLrQxxioNrvgWxsOBrj5h2TOkEZDmSOksfVwGtiXLVWXzhkJ_gFP4mJc</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Ikeda, Harukuni</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5244-125X</orcidid></search><sort><creationdate>20231201</creationdate><title>Correlated noise and critical dimensions</title><author>Ikeda, Harukuni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-839c21a637bf933bd1c113138697358b52d569edc1ca0efe285819a58ceb4823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ikeda, Harukuni</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ikeda, Harukuni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlated noise and critical dimensions</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>108</volume><issue>6-1</issue><spage>064119</spage><epage>064119</epage><pages>064119-064119</pages><artnum>064119</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>In equilibrium, the Mermin-Wagner theorem prohibits the continuous symmetry breaking for all dimensions d≤2. In this work, we discuss that this limitation can be circumvented in nonequilibrium systems driven by the spatiotemporally long-range anticorrelated noise. We first compute the lower and upper critical dimensions of the O(n) model driven by the spatiotemporally correlated noise by means of the dimensional analysis. Next we consider the spherical model, which corresponds to the large-n limit of the O(n) model and allows us to compute the critical dimensions and critical exponents, analytically. Both results suggest that the critical dimensions increase when the noise is positively correlated in space and time and decrease when anticorrelated. We also report that the spherical model with the correlated noise shows the hyperuniformity and giant number fluctuation even well above the critical point.</abstract><cop>United States</cop><pmid>38243493</pmid><doi>10.1103/PhysRevE.108.064119</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5244-125X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2023-12, Vol.108 (6-1), p.064119-064119, Article 064119
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_2929057255
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Correlated noise and critical dimensions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A28%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlated%20noise%20and%20critical%20dimensions&rft.jtitle=Physical%20review.%20E&rft.au=Ikeda,%20Harukuni&rft.date=2023-12-01&rft.volume=108&rft.issue=6-1&rft.spage=064119&rft.epage=064119&rft.pages=064119-064119&rft.artnum=064119&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.108.064119&rft_dat=%3Cproquest_cross%3E2929057255%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c255t-839c21a637bf933bd1c113138697358b52d569edc1ca0efe285819a58ceb4823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2929057255&rft_id=info:pmid/38243493&rfr_iscdi=true