Loading…

Automatic assessment of left ventricular function for hemodynamic monitoring using artificial intelligence and transesophageal echocardiography

We have developed a method to automatically assess LV function by measuring mitral annular plane systolic excursion (MAPSE) using artificial intelligence and transesophageal echocardiography (autoMAPSE). Our aim was to evaluate autoMAPSE as an automatic tool for rapid and quantitative assessment of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of clinical monitoring and computing 2024-04, Vol.38 (2), p.281-291
Main Authors: Yu, Jinyang, Taskén, Anders Austlid, Flade, Hans Martin, Skogvoll, Eirik, Berg, Erik Andreas Rye, Grenne, Bjørnar, Rimehaug, Audun, Kirkeby-Garstad, Idar, Kiss, Gabriel, Aakhus, Svend
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-96719086707349816c1be998327870e6197d5405ba2d5b2ae7189069aa21d4a13
cites cdi_FETCH-LOGICAL-c375t-96719086707349816c1be998327870e6197d5405ba2d5b2ae7189069aa21d4a13
container_end_page 291
container_issue 2
container_start_page 281
container_title Journal of clinical monitoring and computing
container_volume 38
creator Yu, Jinyang
Taskén, Anders Austlid
Flade, Hans Martin
Skogvoll, Eirik
Berg, Erik Andreas Rye
Grenne, Bjørnar
Rimehaug, Audun
Kirkeby-Garstad, Idar
Kiss, Gabriel
Aakhus, Svend
description We have developed a method to automatically assess LV function by measuring mitral annular plane systolic excursion (MAPSE) using artificial intelligence and transesophageal echocardiography (autoMAPSE). Our aim was to evaluate autoMAPSE as an automatic tool for rapid and quantitative assessment of LV function in critical care patients. In this retrospective study, we studied 40 critical care patients immediately after cardiac surgery. First, we recorded a set of echocardiographic data, consisting of three consecutive beats of midesophageal two- and four-chamber views. We then altered the patient’s hemodynamics by positioning them in anti-Trendelenburg and repeated the recordings. We measured MAPSE manually and used autoMAPSE in all available heartbeats and in four LV walls. To assess the agreement with manual measurements, we used a modified Bland–Altman analysis. To assess the precision of each method, we calculated the least significant change (LSC). Finally, to assess trending ability, we calculated the concordance rates using a four-quadrant plot. We found that autoMAPSE measured MAPSE in almost every set of two- and four-chamber views (feasibility 95%). It took less than a second to measure and average MAPSE over three heartbeats. AutoMAPSE had a low bias (0.4 mm) and acceptable limits of agreement (− 3.7 to 4.5 mm). AutoMAPSE was more precise than manual measurements if it averaged more heartbeats. AutoMAPSE had acceptable trending ability (concordance rate 81%) during hemodynamic alterations. In conclusion, autoMAPSE is feasible as an automatic tool for rapid and quantitative assessment of LV function, indicating its potential for hemodynamic monitoring. Graphical Abstract
doi_str_mv 10.1007/s10877-023-01118-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2929096908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929096908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-96719086707349816c1be998327870e6197d5405ba2d5b2ae7189069aa21d4a13</originalsourceid><addsrcrecordid>eNp9kUuPFCEUhYnROA_9Ay4MiZvZlF6gqoDlZDKvZBI3uia3KaqbSRWUQJnpX-FflrZHTVy44ZF855wLh5B3DD4yAPkpM1BSNsBFA4wx1Ty9IKesk6LhPWtf1rNQsmEC5Ak5y_kRALQS7DU5EYor0LI7JT8u1xJnLN5SzNnlPLtQaBzp5MZCv9dL8nadMNFxDbb4GOgYE925OQ77gHPVzTH4EpMPW7rmw4qp-NFbjxP1obhp8lsXrKMYBloShhoTlx1uXQWc3UWLafBxm3DZ7d-QVyNO2b193s_J15vrL1d3zcPn2_ury4fGCtmVRveSaVC9BClarVhv2cbp-joulQTXMy2HroVug3zoNhydZEpDrxE5G1pk4pxcHH2XFL-tLhcz-2zrrBhcXLPhmmvQfc2o6Id_0Me4plCnMwIEV63ooa8UP1I2xZyTG82S_IxpbxiYQ13mWJepdZlfdZmnKnr_bL1uZjf8kfzupwLiCOTl8MEu_c3-j-1PQv2jSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3032843606</pqid></control><display><type>article</type><title>Automatic assessment of left ventricular function for hemodynamic monitoring using artificial intelligence and transesophageal echocardiography</title><source>Springer Nature</source><creator>Yu, Jinyang ; Taskén, Anders Austlid ; Flade, Hans Martin ; Skogvoll, Eirik ; Berg, Erik Andreas Rye ; Grenne, Bjørnar ; Rimehaug, Audun ; Kirkeby-Garstad, Idar ; Kiss, Gabriel ; Aakhus, Svend</creator><creatorcontrib>Yu, Jinyang ; Taskén, Anders Austlid ; Flade, Hans Martin ; Skogvoll, Eirik ; Berg, Erik Andreas Rye ; Grenne, Bjørnar ; Rimehaug, Audun ; Kirkeby-Garstad, Idar ; Kiss, Gabriel ; Aakhus, Svend</creatorcontrib><description>We have developed a method to automatically assess LV function by measuring mitral annular plane systolic excursion (MAPSE) using artificial intelligence and transesophageal echocardiography (autoMAPSE). Our aim was to evaluate autoMAPSE as an automatic tool for rapid and quantitative assessment of LV function in critical care patients. In this retrospective study, we studied 40 critical care patients immediately after cardiac surgery. First, we recorded a set of echocardiographic data, consisting of three consecutive beats of midesophageal two- and four-chamber views. We then altered the patient’s hemodynamics by positioning them in anti-Trendelenburg and repeated the recordings. We measured MAPSE manually and used autoMAPSE in all available heartbeats and in four LV walls. To assess the agreement with manual measurements, we used a modified Bland–Altman analysis. To assess the precision of each method, we calculated the least significant change (LSC). Finally, to assess trending ability, we calculated the concordance rates using a four-quadrant plot. We found that autoMAPSE measured MAPSE in almost every set of two- and four-chamber views (feasibility 95%). It took less than a second to measure and average MAPSE over three heartbeats. AutoMAPSE had a low bias (0.4 mm) and acceptable limits of agreement (− 3.7 to 4.5 mm). AutoMAPSE was more precise than manual measurements if it averaged more heartbeats. AutoMAPSE had acceptable trending ability (concordance rate 81%) during hemodynamic alterations. In conclusion, autoMAPSE is feasible as an automatic tool for rapid and quantitative assessment of LV function, indicating its potential for hemodynamic monitoring. Graphical Abstract</description><identifier>ISSN: 1387-1307</identifier><identifier>EISSN: 1573-2614</identifier><identifier>DOI: 10.1007/s10877-023-01118-x</identifier><identifier>PMID: 38280975</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Anesthesiology ; Artificial intelligence ; Chambers ; Critical care ; Critical Care Medicine ; Echocardiography ; Feasibility ; Health Sciences ; Hemodynamics ; Intensive ; Mathematical analysis ; Medicine ; Medicine &amp; Public Health ; Monitoring ; Original Research ; Statistics for Life Sciences</subject><ispartof>Journal of clinical monitoring and computing, 2024-04, Vol.38 (2), p.281-291</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-96719086707349816c1be998327870e6197d5405ba2d5b2ae7189069aa21d4a13</citedby><cites>FETCH-LOGICAL-c375t-96719086707349816c1be998327870e6197d5405ba2d5b2ae7189069aa21d4a13</cites><orcidid>0000-0002-6984-0708 ; 0000-0002-4803-6083 ; 0000-0002-0840-4013 ; 0000-0002-2984-6865 ; 0000-0001-6658-7594 ; 0000-0001-5024-1548 ; 0000-0001-5090-4102 ; 0000-0002-5618-5556 ; 0000-0002-2941-6187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38280975$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Jinyang</creatorcontrib><creatorcontrib>Taskén, Anders Austlid</creatorcontrib><creatorcontrib>Flade, Hans Martin</creatorcontrib><creatorcontrib>Skogvoll, Eirik</creatorcontrib><creatorcontrib>Berg, Erik Andreas Rye</creatorcontrib><creatorcontrib>Grenne, Bjørnar</creatorcontrib><creatorcontrib>Rimehaug, Audun</creatorcontrib><creatorcontrib>Kirkeby-Garstad, Idar</creatorcontrib><creatorcontrib>Kiss, Gabriel</creatorcontrib><creatorcontrib>Aakhus, Svend</creatorcontrib><title>Automatic assessment of left ventricular function for hemodynamic monitoring using artificial intelligence and transesophageal echocardiography</title><title>Journal of clinical monitoring and computing</title><addtitle>J Clin Monit Comput</addtitle><addtitle>J Clin Monit Comput</addtitle><description>We have developed a method to automatically assess LV function by measuring mitral annular plane systolic excursion (MAPSE) using artificial intelligence and transesophageal echocardiography (autoMAPSE). Our aim was to evaluate autoMAPSE as an automatic tool for rapid and quantitative assessment of LV function in critical care patients. In this retrospective study, we studied 40 critical care patients immediately after cardiac surgery. First, we recorded a set of echocardiographic data, consisting of three consecutive beats of midesophageal two- and four-chamber views. We then altered the patient’s hemodynamics by positioning them in anti-Trendelenburg and repeated the recordings. We measured MAPSE manually and used autoMAPSE in all available heartbeats and in four LV walls. To assess the agreement with manual measurements, we used a modified Bland–Altman analysis. To assess the precision of each method, we calculated the least significant change (LSC). Finally, to assess trending ability, we calculated the concordance rates using a four-quadrant plot. We found that autoMAPSE measured MAPSE in almost every set of two- and four-chamber views (feasibility 95%). It took less than a second to measure and average MAPSE over three heartbeats. AutoMAPSE had a low bias (0.4 mm) and acceptable limits of agreement (− 3.7 to 4.5 mm). AutoMAPSE was more precise than manual measurements if it averaged more heartbeats. AutoMAPSE had acceptable trending ability (concordance rate 81%) during hemodynamic alterations. In conclusion, autoMAPSE is feasible as an automatic tool for rapid and quantitative assessment of LV function, indicating its potential for hemodynamic monitoring. Graphical Abstract</description><subject>Anesthesiology</subject><subject>Artificial intelligence</subject><subject>Chambers</subject><subject>Critical care</subject><subject>Critical Care Medicine</subject><subject>Echocardiography</subject><subject>Feasibility</subject><subject>Health Sciences</subject><subject>Hemodynamics</subject><subject>Intensive</subject><subject>Mathematical analysis</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Monitoring</subject><subject>Original Research</subject><subject>Statistics for Life Sciences</subject><issn>1387-1307</issn><issn>1573-2614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUuPFCEUhYnROA_9Ay4MiZvZlF6gqoDlZDKvZBI3uia3KaqbSRWUQJnpX-FflrZHTVy44ZF855wLh5B3DD4yAPkpM1BSNsBFA4wx1Ty9IKesk6LhPWtf1rNQsmEC5Ak5y_kRALQS7DU5EYor0LI7JT8u1xJnLN5SzNnlPLtQaBzp5MZCv9dL8nadMNFxDbb4GOgYE925OQ77gHPVzTH4EpMPW7rmw4qp-NFbjxP1obhp8lsXrKMYBloShhoTlx1uXQWc3UWLafBxm3DZ7d-QVyNO2b193s_J15vrL1d3zcPn2_ury4fGCtmVRveSaVC9BClarVhv2cbp-joulQTXMy2HroVug3zoNhydZEpDrxE5G1pk4pxcHH2XFL-tLhcz-2zrrBhcXLPhmmvQfc2o6Id_0Me4plCnMwIEV63ooa8UP1I2xZyTG82S_IxpbxiYQ13mWJepdZlfdZmnKnr_bL1uZjf8kfzupwLiCOTl8MEu_c3-j-1PQv2jSw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Yu, Jinyang</creator><creator>Taskén, Anders Austlid</creator><creator>Flade, Hans Martin</creator><creator>Skogvoll, Eirik</creator><creator>Berg, Erik Andreas Rye</creator><creator>Grenne, Bjørnar</creator><creator>Rimehaug, Audun</creator><creator>Kirkeby-Garstad, Idar</creator><creator>Kiss, Gabriel</creator><creator>Aakhus, Svend</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6984-0708</orcidid><orcidid>https://orcid.org/0000-0002-4803-6083</orcidid><orcidid>https://orcid.org/0000-0002-0840-4013</orcidid><orcidid>https://orcid.org/0000-0002-2984-6865</orcidid><orcidid>https://orcid.org/0000-0001-6658-7594</orcidid><orcidid>https://orcid.org/0000-0001-5024-1548</orcidid><orcidid>https://orcid.org/0000-0001-5090-4102</orcidid><orcidid>https://orcid.org/0000-0002-5618-5556</orcidid><orcidid>https://orcid.org/0000-0002-2941-6187</orcidid></search><sort><creationdate>20240401</creationdate><title>Automatic assessment of left ventricular function for hemodynamic monitoring using artificial intelligence and transesophageal echocardiography</title><author>Yu, Jinyang ; Taskén, Anders Austlid ; Flade, Hans Martin ; Skogvoll, Eirik ; Berg, Erik Andreas Rye ; Grenne, Bjørnar ; Rimehaug, Audun ; Kirkeby-Garstad, Idar ; Kiss, Gabriel ; Aakhus, Svend</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-96719086707349816c1be998327870e6197d5405ba2d5b2ae7189069aa21d4a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anesthesiology</topic><topic>Artificial intelligence</topic><topic>Chambers</topic><topic>Critical care</topic><topic>Critical Care Medicine</topic><topic>Echocardiography</topic><topic>Feasibility</topic><topic>Health Sciences</topic><topic>Hemodynamics</topic><topic>Intensive</topic><topic>Mathematical analysis</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Monitoring</topic><topic>Original Research</topic><topic>Statistics for Life Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jinyang</creatorcontrib><creatorcontrib>Taskén, Anders Austlid</creatorcontrib><creatorcontrib>Flade, Hans Martin</creatorcontrib><creatorcontrib>Skogvoll, Eirik</creatorcontrib><creatorcontrib>Berg, Erik Andreas Rye</creatorcontrib><creatorcontrib>Grenne, Bjørnar</creatorcontrib><creatorcontrib>Rimehaug, Audun</creatorcontrib><creatorcontrib>Kirkeby-Garstad, Idar</creatorcontrib><creatorcontrib>Kiss, Gabriel</creatorcontrib><creatorcontrib>Aakhus, Svend</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical monitoring and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Jinyang</au><au>Taskén, Anders Austlid</au><au>Flade, Hans Martin</au><au>Skogvoll, Eirik</au><au>Berg, Erik Andreas Rye</au><au>Grenne, Bjørnar</au><au>Rimehaug, Audun</au><au>Kirkeby-Garstad, Idar</au><au>Kiss, Gabriel</au><au>Aakhus, Svend</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic assessment of left ventricular function for hemodynamic monitoring using artificial intelligence and transesophageal echocardiography</atitle><jtitle>Journal of clinical monitoring and computing</jtitle><stitle>J Clin Monit Comput</stitle><addtitle>J Clin Monit Comput</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>38</volume><issue>2</issue><spage>281</spage><epage>291</epage><pages>281-291</pages><issn>1387-1307</issn><eissn>1573-2614</eissn><abstract>We have developed a method to automatically assess LV function by measuring mitral annular plane systolic excursion (MAPSE) using artificial intelligence and transesophageal echocardiography (autoMAPSE). Our aim was to evaluate autoMAPSE as an automatic tool for rapid and quantitative assessment of LV function in critical care patients. In this retrospective study, we studied 40 critical care patients immediately after cardiac surgery. First, we recorded a set of echocardiographic data, consisting of three consecutive beats of midesophageal two- and four-chamber views. We then altered the patient’s hemodynamics by positioning them in anti-Trendelenburg and repeated the recordings. We measured MAPSE manually and used autoMAPSE in all available heartbeats and in four LV walls. To assess the agreement with manual measurements, we used a modified Bland–Altman analysis. To assess the precision of each method, we calculated the least significant change (LSC). Finally, to assess trending ability, we calculated the concordance rates using a four-quadrant plot. We found that autoMAPSE measured MAPSE in almost every set of two- and four-chamber views (feasibility 95%). It took less than a second to measure and average MAPSE over three heartbeats. AutoMAPSE had a low bias (0.4 mm) and acceptable limits of agreement (− 3.7 to 4.5 mm). AutoMAPSE was more precise than manual measurements if it averaged more heartbeats. AutoMAPSE had acceptable trending ability (concordance rate 81%) during hemodynamic alterations. In conclusion, autoMAPSE is feasible as an automatic tool for rapid and quantitative assessment of LV function, indicating its potential for hemodynamic monitoring. Graphical Abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>38280975</pmid><doi>10.1007/s10877-023-01118-x</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6984-0708</orcidid><orcidid>https://orcid.org/0000-0002-4803-6083</orcidid><orcidid>https://orcid.org/0000-0002-0840-4013</orcidid><orcidid>https://orcid.org/0000-0002-2984-6865</orcidid><orcidid>https://orcid.org/0000-0001-6658-7594</orcidid><orcidid>https://orcid.org/0000-0001-5024-1548</orcidid><orcidid>https://orcid.org/0000-0001-5090-4102</orcidid><orcidid>https://orcid.org/0000-0002-5618-5556</orcidid><orcidid>https://orcid.org/0000-0002-2941-6187</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1387-1307
ispartof Journal of clinical monitoring and computing, 2024-04, Vol.38 (2), p.281-291
issn 1387-1307
1573-2614
language eng
recordid cdi_proquest_miscellaneous_2929096908
source Springer Nature
subjects Anesthesiology
Artificial intelligence
Chambers
Critical care
Critical Care Medicine
Echocardiography
Feasibility
Health Sciences
Hemodynamics
Intensive
Mathematical analysis
Medicine
Medicine & Public Health
Monitoring
Original Research
Statistics for Life Sciences
title Automatic assessment of left ventricular function for hemodynamic monitoring using artificial intelligence and transesophageal echocardiography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20assessment%20of%20left%20ventricular%20function%20for%20hemodynamic%20monitoring%20using%20artificial%20intelligence%20and%20transesophageal%20echocardiography&rft.jtitle=Journal%20of%20clinical%20monitoring%20and%20computing&rft.au=Yu,%20Jinyang&rft.date=2024-04-01&rft.volume=38&rft.issue=2&rft.spage=281&rft.epage=291&rft.pages=281-291&rft.issn=1387-1307&rft.eissn=1573-2614&rft_id=info:doi/10.1007/s10877-023-01118-x&rft_dat=%3Cproquest_cross%3E2929096908%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-96719086707349816c1be998327870e6197d5405ba2d5b2ae7189069aa21d4a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3032843606&rft_id=info:pmid/38280975&rfr_iscdi=true