Loading…
Automatic assessment of left ventricular function for hemodynamic monitoring using artificial intelligence and transesophageal echocardiography
We have developed a method to automatically assess LV function by measuring mitral annular plane systolic excursion (MAPSE) using artificial intelligence and transesophageal echocardiography (autoMAPSE). Our aim was to evaluate autoMAPSE as an automatic tool for rapid and quantitative assessment of...
Saved in:
Published in: | Journal of clinical monitoring and computing 2024-04, Vol.38 (2), p.281-291 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c375t-96719086707349816c1be998327870e6197d5405ba2d5b2ae7189069aa21d4a13 |
---|---|
cites | cdi_FETCH-LOGICAL-c375t-96719086707349816c1be998327870e6197d5405ba2d5b2ae7189069aa21d4a13 |
container_end_page | 291 |
container_issue | 2 |
container_start_page | 281 |
container_title | Journal of clinical monitoring and computing |
container_volume | 38 |
creator | Yu, Jinyang Taskén, Anders Austlid Flade, Hans Martin Skogvoll, Eirik Berg, Erik Andreas Rye Grenne, Bjørnar Rimehaug, Audun Kirkeby-Garstad, Idar Kiss, Gabriel Aakhus, Svend |
description | We have developed a method to automatically assess LV function by measuring mitral annular plane systolic excursion (MAPSE) using artificial intelligence and transesophageal echocardiography (autoMAPSE). Our aim was to evaluate autoMAPSE as an automatic tool for rapid and quantitative assessment of LV function in critical care patients. In this retrospective study, we studied 40 critical care patients immediately after cardiac surgery. First, we recorded a set of echocardiographic data, consisting of three consecutive beats of midesophageal two- and four-chamber views. We then altered the patient’s hemodynamics by positioning them in anti-Trendelenburg and repeated the recordings. We measured MAPSE manually and used autoMAPSE in all available heartbeats and in four LV walls. To assess the agreement with manual measurements, we used a modified Bland–Altman analysis. To assess the precision of each method, we calculated the least significant change (LSC). Finally, to assess trending ability, we calculated the concordance rates using a four-quadrant plot. We found that autoMAPSE measured MAPSE in almost every set of two- and four-chamber views (feasibility 95%). It took less than a second to measure and average MAPSE over three heartbeats. AutoMAPSE had a low bias (0.4 mm) and acceptable limits of agreement (− 3.7 to 4.5 mm). AutoMAPSE was more precise than manual measurements if it averaged more heartbeats. AutoMAPSE had acceptable trending ability (concordance rate 81%) during hemodynamic alterations. In conclusion, autoMAPSE is feasible as an automatic tool for rapid and quantitative assessment of LV function, indicating its potential for hemodynamic monitoring.
Graphical Abstract |
doi_str_mv | 10.1007/s10877-023-01118-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2929096908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2929096908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-96719086707349816c1be998327870e6197d5405ba2d5b2ae7189069aa21d4a13</originalsourceid><addsrcrecordid>eNp9kUuPFCEUhYnROA_9Ay4MiZvZlF6gqoDlZDKvZBI3uia3KaqbSRWUQJnpX-FflrZHTVy44ZF855wLh5B3DD4yAPkpM1BSNsBFA4wx1Ty9IKesk6LhPWtf1rNQsmEC5Ak5y_kRALQS7DU5EYor0LI7JT8u1xJnLN5SzNnlPLtQaBzp5MZCv9dL8nadMNFxDbb4GOgYE925OQ77gHPVzTH4EpMPW7rmw4qp-NFbjxP1obhp8lsXrKMYBloShhoTlx1uXQWc3UWLafBxm3DZ7d-QVyNO2b193s_J15vrL1d3zcPn2_ury4fGCtmVRveSaVC9BClarVhv2cbp-joulQTXMy2HroVug3zoNhydZEpDrxE5G1pk4pxcHH2XFL-tLhcz-2zrrBhcXLPhmmvQfc2o6Id_0Me4plCnMwIEV63ooa8UP1I2xZyTG82S_IxpbxiYQ13mWJepdZlfdZmnKnr_bL1uZjf8kfzupwLiCOTl8MEu_c3-j-1PQv2jSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3032843606</pqid></control><display><type>article</type><title>Automatic assessment of left ventricular function for hemodynamic monitoring using artificial intelligence and transesophageal echocardiography</title><source>Springer Nature</source><creator>Yu, Jinyang ; Taskén, Anders Austlid ; Flade, Hans Martin ; Skogvoll, Eirik ; Berg, Erik Andreas Rye ; Grenne, Bjørnar ; Rimehaug, Audun ; Kirkeby-Garstad, Idar ; Kiss, Gabriel ; Aakhus, Svend</creator><creatorcontrib>Yu, Jinyang ; Taskén, Anders Austlid ; Flade, Hans Martin ; Skogvoll, Eirik ; Berg, Erik Andreas Rye ; Grenne, Bjørnar ; Rimehaug, Audun ; Kirkeby-Garstad, Idar ; Kiss, Gabriel ; Aakhus, Svend</creatorcontrib><description>We have developed a method to automatically assess LV function by measuring mitral annular plane systolic excursion (MAPSE) using artificial intelligence and transesophageal echocardiography (autoMAPSE). Our aim was to evaluate autoMAPSE as an automatic tool for rapid and quantitative assessment of LV function in critical care patients. In this retrospective study, we studied 40 critical care patients immediately after cardiac surgery. First, we recorded a set of echocardiographic data, consisting of three consecutive beats of midesophageal two- and four-chamber views. We then altered the patient’s hemodynamics by positioning them in anti-Trendelenburg and repeated the recordings. We measured MAPSE manually and used autoMAPSE in all available heartbeats and in four LV walls. To assess the agreement with manual measurements, we used a modified Bland–Altman analysis. To assess the precision of each method, we calculated the least significant change (LSC). Finally, to assess trending ability, we calculated the concordance rates using a four-quadrant plot. We found that autoMAPSE measured MAPSE in almost every set of two- and four-chamber views (feasibility 95%). It took less than a second to measure and average MAPSE over three heartbeats. AutoMAPSE had a low bias (0.4 mm) and acceptable limits of agreement (− 3.7 to 4.5 mm). AutoMAPSE was more precise than manual measurements if it averaged more heartbeats. AutoMAPSE had acceptable trending ability (concordance rate 81%) during hemodynamic alterations. In conclusion, autoMAPSE is feasible as an automatic tool for rapid and quantitative assessment of LV function, indicating its potential for hemodynamic monitoring.
Graphical Abstract</description><identifier>ISSN: 1387-1307</identifier><identifier>EISSN: 1573-2614</identifier><identifier>DOI: 10.1007/s10877-023-01118-x</identifier><identifier>PMID: 38280975</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Anesthesiology ; Artificial intelligence ; Chambers ; Critical care ; Critical Care Medicine ; Echocardiography ; Feasibility ; Health Sciences ; Hemodynamics ; Intensive ; Mathematical analysis ; Medicine ; Medicine & Public Health ; Monitoring ; Original Research ; Statistics for Life Sciences</subject><ispartof>Journal of clinical monitoring and computing, 2024-04, Vol.38 (2), p.281-291</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>2024. The Author(s), under exclusive licence to Springer Nature B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-96719086707349816c1be998327870e6197d5405ba2d5b2ae7189069aa21d4a13</citedby><cites>FETCH-LOGICAL-c375t-96719086707349816c1be998327870e6197d5405ba2d5b2ae7189069aa21d4a13</cites><orcidid>0000-0002-6984-0708 ; 0000-0002-4803-6083 ; 0000-0002-0840-4013 ; 0000-0002-2984-6865 ; 0000-0001-6658-7594 ; 0000-0001-5024-1548 ; 0000-0001-5090-4102 ; 0000-0002-5618-5556 ; 0000-0002-2941-6187</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38280975$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Jinyang</creatorcontrib><creatorcontrib>Taskén, Anders Austlid</creatorcontrib><creatorcontrib>Flade, Hans Martin</creatorcontrib><creatorcontrib>Skogvoll, Eirik</creatorcontrib><creatorcontrib>Berg, Erik Andreas Rye</creatorcontrib><creatorcontrib>Grenne, Bjørnar</creatorcontrib><creatorcontrib>Rimehaug, Audun</creatorcontrib><creatorcontrib>Kirkeby-Garstad, Idar</creatorcontrib><creatorcontrib>Kiss, Gabriel</creatorcontrib><creatorcontrib>Aakhus, Svend</creatorcontrib><title>Automatic assessment of left ventricular function for hemodynamic monitoring using artificial intelligence and transesophageal echocardiography</title><title>Journal of clinical monitoring and computing</title><addtitle>J Clin Monit Comput</addtitle><addtitle>J Clin Monit Comput</addtitle><description>We have developed a method to automatically assess LV function by measuring mitral annular plane systolic excursion (MAPSE) using artificial intelligence and transesophageal echocardiography (autoMAPSE). Our aim was to evaluate autoMAPSE as an automatic tool for rapid and quantitative assessment of LV function in critical care patients. In this retrospective study, we studied 40 critical care patients immediately after cardiac surgery. First, we recorded a set of echocardiographic data, consisting of three consecutive beats of midesophageal two- and four-chamber views. We then altered the patient’s hemodynamics by positioning them in anti-Trendelenburg and repeated the recordings. We measured MAPSE manually and used autoMAPSE in all available heartbeats and in four LV walls. To assess the agreement with manual measurements, we used a modified Bland–Altman analysis. To assess the precision of each method, we calculated the least significant change (LSC). Finally, to assess trending ability, we calculated the concordance rates using a four-quadrant plot. We found that autoMAPSE measured MAPSE in almost every set of two- and four-chamber views (feasibility 95%). It took less than a second to measure and average MAPSE over three heartbeats. AutoMAPSE had a low bias (0.4 mm) and acceptable limits of agreement (− 3.7 to 4.5 mm). AutoMAPSE was more precise than manual measurements if it averaged more heartbeats. AutoMAPSE had acceptable trending ability (concordance rate 81%) during hemodynamic alterations. In conclusion, autoMAPSE is feasible as an automatic tool for rapid and quantitative assessment of LV function, indicating its potential for hemodynamic monitoring.
Graphical Abstract</description><subject>Anesthesiology</subject><subject>Artificial intelligence</subject><subject>Chambers</subject><subject>Critical care</subject><subject>Critical Care Medicine</subject><subject>Echocardiography</subject><subject>Feasibility</subject><subject>Health Sciences</subject><subject>Hemodynamics</subject><subject>Intensive</subject><subject>Mathematical analysis</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Monitoring</subject><subject>Original Research</subject><subject>Statistics for Life Sciences</subject><issn>1387-1307</issn><issn>1573-2614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kUuPFCEUhYnROA_9Ay4MiZvZlF6gqoDlZDKvZBI3uia3KaqbSRWUQJnpX-FflrZHTVy44ZF855wLh5B3DD4yAPkpM1BSNsBFA4wx1Ty9IKesk6LhPWtf1rNQsmEC5Ak5y_kRALQS7DU5EYor0LI7JT8u1xJnLN5SzNnlPLtQaBzp5MZCv9dL8nadMNFxDbb4GOgYE925OQ77gHPVzTH4EpMPW7rmw4qp-NFbjxP1obhp8lsXrKMYBloShhoTlx1uXQWc3UWLafBxm3DZ7d-QVyNO2b193s_J15vrL1d3zcPn2_ury4fGCtmVRveSaVC9BClarVhv2cbp-joulQTXMy2HroVug3zoNhydZEpDrxE5G1pk4pxcHH2XFL-tLhcz-2zrrBhcXLPhmmvQfc2o6Id_0Me4plCnMwIEV63ooa8UP1I2xZyTG82S_IxpbxiYQ13mWJepdZlfdZmnKnr_bL1uZjf8kfzupwLiCOTl8MEu_c3-j-1PQv2jSw</recordid><startdate>20240401</startdate><enddate>20240401</enddate><creator>Yu, Jinyang</creator><creator>Taskén, Anders Austlid</creator><creator>Flade, Hans Martin</creator><creator>Skogvoll, Eirik</creator><creator>Berg, Erik Andreas Rye</creator><creator>Grenne, Bjørnar</creator><creator>Rimehaug, Audun</creator><creator>Kirkeby-Garstad, Idar</creator><creator>Kiss, Gabriel</creator><creator>Aakhus, Svend</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6984-0708</orcidid><orcidid>https://orcid.org/0000-0002-4803-6083</orcidid><orcidid>https://orcid.org/0000-0002-0840-4013</orcidid><orcidid>https://orcid.org/0000-0002-2984-6865</orcidid><orcidid>https://orcid.org/0000-0001-6658-7594</orcidid><orcidid>https://orcid.org/0000-0001-5024-1548</orcidid><orcidid>https://orcid.org/0000-0001-5090-4102</orcidid><orcidid>https://orcid.org/0000-0002-5618-5556</orcidid><orcidid>https://orcid.org/0000-0002-2941-6187</orcidid></search><sort><creationdate>20240401</creationdate><title>Automatic assessment of left ventricular function for hemodynamic monitoring using artificial intelligence and transesophageal echocardiography</title><author>Yu, Jinyang ; Taskén, Anders Austlid ; Flade, Hans Martin ; Skogvoll, Eirik ; Berg, Erik Andreas Rye ; Grenne, Bjørnar ; Rimehaug, Audun ; Kirkeby-Garstad, Idar ; Kiss, Gabriel ; Aakhus, Svend</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-96719086707349816c1be998327870e6197d5405ba2d5b2ae7189069aa21d4a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anesthesiology</topic><topic>Artificial intelligence</topic><topic>Chambers</topic><topic>Critical care</topic><topic>Critical Care Medicine</topic><topic>Echocardiography</topic><topic>Feasibility</topic><topic>Health Sciences</topic><topic>Hemodynamics</topic><topic>Intensive</topic><topic>Mathematical analysis</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Monitoring</topic><topic>Original Research</topic><topic>Statistics for Life Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jinyang</creatorcontrib><creatorcontrib>Taskén, Anders Austlid</creatorcontrib><creatorcontrib>Flade, Hans Martin</creatorcontrib><creatorcontrib>Skogvoll, Eirik</creatorcontrib><creatorcontrib>Berg, Erik Andreas Rye</creatorcontrib><creatorcontrib>Grenne, Bjørnar</creatorcontrib><creatorcontrib>Rimehaug, Audun</creatorcontrib><creatorcontrib>Kirkeby-Garstad, Idar</creatorcontrib><creatorcontrib>Kiss, Gabriel</creatorcontrib><creatorcontrib>Aakhus, Svend</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of clinical monitoring and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Jinyang</au><au>Taskén, Anders Austlid</au><au>Flade, Hans Martin</au><au>Skogvoll, Eirik</au><au>Berg, Erik Andreas Rye</au><au>Grenne, Bjørnar</au><au>Rimehaug, Audun</au><au>Kirkeby-Garstad, Idar</au><au>Kiss, Gabriel</au><au>Aakhus, Svend</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic assessment of left ventricular function for hemodynamic monitoring using artificial intelligence and transesophageal echocardiography</atitle><jtitle>Journal of clinical monitoring and computing</jtitle><stitle>J Clin Monit Comput</stitle><addtitle>J Clin Monit Comput</addtitle><date>2024-04-01</date><risdate>2024</risdate><volume>38</volume><issue>2</issue><spage>281</spage><epage>291</epage><pages>281-291</pages><issn>1387-1307</issn><eissn>1573-2614</eissn><abstract>We have developed a method to automatically assess LV function by measuring mitral annular plane systolic excursion (MAPSE) using artificial intelligence and transesophageal echocardiography (autoMAPSE). Our aim was to evaluate autoMAPSE as an automatic tool for rapid and quantitative assessment of LV function in critical care patients. In this retrospective study, we studied 40 critical care patients immediately after cardiac surgery. First, we recorded a set of echocardiographic data, consisting of three consecutive beats of midesophageal two- and four-chamber views. We then altered the patient’s hemodynamics by positioning them in anti-Trendelenburg and repeated the recordings. We measured MAPSE manually and used autoMAPSE in all available heartbeats and in four LV walls. To assess the agreement with manual measurements, we used a modified Bland–Altman analysis. To assess the precision of each method, we calculated the least significant change (LSC). Finally, to assess trending ability, we calculated the concordance rates using a four-quadrant plot. We found that autoMAPSE measured MAPSE in almost every set of two- and four-chamber views (feasibility 95%). It took less than a second to measure and average MAPSE over three heartbeats. AutoMAPSE had a low bias (0.4 mm) and acceptable limits of agreement (− 3.7 to 4.5 mm). AutoMAPSE was more precise than manual measurements if it averaged more heartbeats. AutoMAPSE had acceptable trending ability (concordance rate 81%) during hemodynamic alterations. In conclusion, autoMAPSE is feasible as an automatic tool for rapid and quantitative assessment of LV function, indicating its potential for hemodynamic monitoring.
Graphical Abstract</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>38280975</pmid><doi>10.1007/s10877-023-01118-x</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6984-0708</orcidid><orcidid>https://orcid.org/0000-0002-4803-6083</orcidid><orcidid>https://orcid.org/0000-0002-0840-4013</orcidid><orcidid>https://orcid.org/0000-0002-2984-6865</orcidid><orcidid>https://orcid.org/0000-0001-6658-7594</orcidid><orcidid>https://orcid.org/0000-0001-5024-1548</orcidid><orcidid>https://orcid.org/0000-0001-5090-4102</orcidid><orcidid>https://orcid.org/0000-0002-5618-5556</orcidid><orcidid>https://orcid.org/0000-0002-2941-6187</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1387-1307 |
ispartof | Journal of clinical monitoring and computing, 2024-04, Vol.38 (2), p.281-291 |
issn | 1387-1307 1573-2614 |
language | eng |
recordid | cdi_proquest_miscellaneous_2929096908 |
source | Springer Nature |
subjects | Anesthesiology Artificial intelligence Chambers Critical care Critical Care Medicine Echocardiography Feasibility Health Sciences Hemodynamics Intensive Mathematical analysis Medicine Medicine & Public Health Monitoring Original Research Statistics for Life Sciences |
title | Automatic assessment of left ventricular function for hemodynamic monitoring using artificial intelligence and transesophageal echocardiography |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T21%3A08%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20assessment%20of%20left%20ventricular%20function%20for%20hemodynamic%20monitoring%20using%20artificial%20intelligence%20and%20transesophageal%20echocardiography&rft.jtitle=Journal%20of%20clinical%20monitoring%20and%20computing&rft.au=Yu,%20Jinyang&rft.date=2024-04-01&rft.volume=38&rft.issue=2&rft.spage=281&rft.epage=291&rft.pages=281-291&rft.issn=1387-1307&rft.eissn=1573-2614&rft_id=info:doi/10.1007/s10877-023-01118-x&rft_dat=%3Cproquest_cross%3E2929096908%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-96719086707349816c1be998327870e6197d5405ba2d5b2ae7189069aa21d4a13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3032843606&rft_id=info:pmid/38280975&rfr_iscdi=true |