Loading…
Mass-Independent Scheme to Test the Quantumness of a Massive Object
The search for empirical schemes to evidence the nonclassicality of large masses is a central quest of current research. However, practical schemes to witness the irreducible quantumness of an arbitrarily large mass are still lacking. To this end, we incorporate crucial modifications to the standard...
Saved in:
Published in: | Physical review letters 2024-01, Vol.132 (3), p.030202-030202, Article 030202 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The search for empirical schemes to evidence the nonclassicality of large masses is a central quest of current research. However, practical schemes to witness the irreducible quantumness of an arbitrarily large mass are still lacking. To this end, we incorporate crucial modifications to the standard tools for probing the quantum violation of the pivotal classical notion of macrorealism (MR): while usual tests use the same measurement arrangement at successive times, here we use two different measurement arrangements. This yields a striking result: a mass-independent violation of MR is possible for harmonic oscillator systems. In fact, our adaptation enables probing quantum violations for literally any mass, momentum, and frequency. Moreover, coarse-grained position measurements at an accuracy much worse than the standard quantum limit, as well as knowing the relevant parameters only to this precision, without requiring them to be tuned, suffice for our proposal. These should drastically simplify the experimental effort in testing the nonclassicality of massive objects ranging from atomic ions to macroscopic mirrors in LIGO. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.132.030202 |