Loading…
Repercussion of inflammatory bowel disease on lung homeostasis: The role of photobiomodulation
Inflammatory bowel diseases (IBD) are chronic and multifactorial diseases characterized by dysfunction of the intestinal mucosa and impaired immune response. Data show an important relationship between intestine and respiratory tract. The treatments of IBD are limited. Photobiomodulation (PBM) is an...
Saved in:
Published in: | Lasers in medical science 2024-02, Vol.39 (1), p.70-70, Article 70 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Inflammatory bowel diseases (IBD) are chronic and multifactorial diseases characterized by dysfunction of the intestinal mucosa and impaired immune response. Data show an important relationship between intestine and respiratory tract. The treatments of IBD are limited. Photobiomodulation (PBM) is an effective anti-inflammatory therapy. Our objective was to evaluate the repercussion of IBD as well as its treatment with PBM on pulmonary homeostasis. Male Wistar rats were submitted to IBD induction by acetic acid and treated or not with PBM. Rats were irradiated with red LED on both right and left sides of the ventral surface and beside the external anal region during 3 consecutive days (wavelenght 660 nm, power 100 mw, total energy 15 J and time of irradiation 150 s per point). Our results showed that IBD altered pulmonary homeostasis, since we observed an increase in the histopathological score, in myeloperoxidase activity (MPO), in mast cell degranulation, and in the release and gene expression of cytokines. We also showed that PBM treatment reduced biomarkers of IBD and reverted all augmented parameters in the lung, restoring its homeostasis. Thus, we confirm experimentally the important gut-lung axis and the role of PBM as a promising therapy. |
---|---|
ISSN: | 1435-604X 0268-8921 1435-604X |
DOI: | 10.1007/s10103-024-04022-1 |