Loading…
Zinc Doping Induces Enhanced Thermoelectric Performance of Solvothermal SnTe
The creation of hierarchical nanostructures can effectively strengthen phonon scattering to reduce lattice thermal conductivity for improving thermoelectric properties in inorganic solids. Here, we use Zn doping to induce a remarkable reduction in the lattice thermal conductivity in SnTe, approachin...
Saved in:
Published in: | Chemistry, an Asian journal an Asian journal, 2024-05, Vol.19 (10), p.e202400130-n/a |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3730-5b67b97ba384054654ec2ed947b75fc392275bfb6fc7948fa41b426db40fd5b83 |
---|---|
cites | cdi_FETCH-LOGICAL-c3730-5b67b97ba384054654ec2ed947b75fc392275bfb6fc7948fa41b426db40fd5b83 |
container_end_page | n/a |
container_issue | 10 |
container_start_page | e202400130 |
container_title | Chemistry, an Asian journal |
container_volume | 19 |
creator | Wang, Lijun Shi, Xiao‐Lei Li, Lvzhou Hong, Min Lin, Bencai Miao, Pengcheng Ding, Jianning Yuan, Ningyi Zheng, Shuqi Chen, Zhi‐Gang |
description | The creation of hierarchical nanostructures can effectively strengthen phonon scattering to reduce lattice thermal conductivity for improving thermoelectric properties in inorganic solids. Here, we use Zn doping to induce a remarkable reduction in the lattice thermal conductivity in SnTe, approaching the theoretical minimum limit. Microstructure analysis reveals that ZnTe nanoprecipitates can embed within SnTe grains beyond the solubility limit of Zn in the Zn alloyed SnTe. These nanoprecipitates result in a substantial decrease of the lattice thermal conductivity in SnTe, leading to an ultralow lattice thermal conductivity of 0.50 W m−1 K−1 at 773 K and a peak ZT of ~0.48 at 773 K, marking an approximately 45 % enhancement compared to pristine SnTe. This study underscores the effectiveness of incorporating ZnTe nanoprecipitates in boosting the thermoelectric performance of SnTe‐based materials.
We report a microwave‐assisted wet chemical method for doping Zn into SnTe thermoelectric materials to in‐situ induce rich ZnTe nanoprecipitates, nanopores, a large number of grain boundaries and other multi‐dimensional defects. While ensuring competitive electrical transport performance, the introduced multi‐dimensional defects induced phonon scattering across the entire scale, reducing the lattice thermal conductivity of SnTe to the amorphous limit and enhancing its thermoelectric performance. |
doi_str_mv | 10.1002/asia.202400130 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2929539063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3055923838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3730-5b67b97ba384054654ec2ed947b75fc392275bfb6fc7948fa41b426db40fd5b83</originalsourceid><addsrcrecordid>eNqFkM9r2zAUgMXoWPpj1x2LoZddkj7rhyUdQ5p2gUAHSWHsIiRZahxsK5Pijvz3tUmWwS476YG-9_H4EPqSwyQHwPc6VXqCAVOAnMAHdJmLIh9Tnv-4OM9YjNBVSlsAhkGKT2hEBBEgCn6Jlj-r1mYPYVe1r9miLTvrUjZvN7q1rszWGxeb4Gpn97Gy2XcXfYjN8JcFn61C_Rb2A6LrbNWu3Q366HWd3OfTe41eHufr2bfx8vlpMZsux5ZwAmNmCm4kN5oICowWjDqLXSkpN5x5SyTGnBlvCm-5pMJrmhuKi9JQ8CUzglyjr0fvLoZfnUt71VTJurrWrQtdUlhiyYiEgvTo3T_oNnSx7a9TBBiTeEjRU5MjZWNIKTqvdrFqdDyoHNTQWQ2d1blzv3B70namceUZ_xO2B-QR-F3V7vAfnZquFtO_8nf0o4iS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3055923838</pqid></control><display><type>article</type><title>Zinc Doping Induces Enhanced Thermoelectric Performance of Solvothermal SnTe</title><source>Wiley</source><creator>Wang, Lijun ; Shi, Xiao‐Lei ; Li, Lvzhou ; Hong, Min ; Lin, Bencai ; Miao, Pengcheng ; Ding, Jianning ; Yuan, Ningyi ; Zheng, Shuqi ; Chen, Zhi‐Gang</creator><creatorcontrib>Wang, Lijun ; Shi, Xiao‐Lei ; Li, Lvzhou ; Hong, Min ; Lin, Bencai ; Miao, Pengcheng ; Ding, Jianning ; Yuan, Ningyi ; Zheng, Shuqi ; Chen, Zhi‐Gang</creatorcontrib><description>The creation of hierarchical nanostructures can effectively strengthen phonon scattering to reduce lattice thermal conductivity for improving thermoelectric properties in inorganic solids. Here, we use Zn doping to induce a remarkable reduction in the lattice thermal conductivity in SnTe, approaching the theoretical minimum limit. Microstructure analysis reveals that ZnTe nanoprecipitates can embed within SnTe grains beyond the solubility limit of Zn in the Zn alloyed SnTe. These nanoprecipitates result in a substantial decrease of the lattice thermal conductivity in SnTe, leading to an ultralow lattice thermal conductivity of 0.50 W m−1 K−1 at 773 K and a peak ZT of ~0.48 at 773 K, marking an approximately 45 % enhancement compared to pristine SnTe. This study underscores the effectiveness of incorporating ZnTe nanoprecipitates in boosting the thermoelectric performance of SnTe‐based materials.
We report a microwave‐assisted wet chemical method for doping Zn into SnTe thermoelectric materials to in‐situ induce rich ZnTe nanoprecipitates, nanopores, a large number of grain boundaries and other multi‐dimensional defects. While ensuring competitive electrical transport performance, the introduced multi‐dimensional defects induced phonon scattering across the entire scale, reducing the lattice thermal conductivity of SnTe to the amorphous limit and enhancing its thermoelectric performance.</description><identifier>ISSN: 1861-4728</identifier><identifier>EISSN: 1861-471X</identifier><identifier>DOI: 10.1002/asia.202400130</identifier><identifier>PMID: 38380867</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Doping ; Heat transfer ; lattice thermal conductivity ; nanoprecipitate ; SnTe ; Thermal conductivity ; thermoelectric materials ; Thermoelectricity ; Tin tellurides ; Zinc tellurides ; ZnTe</subject><ispartof>Chemistry, an Asian journal, 2024-05, Vol.19 (10), p.e202400130-n/a</ispartof><rights>2024 The Authors. Chemistry - An Asian Journal published by Wiley-VCH GmbH</rights><rights>2024 The Authors. Chemistry - An Asian Journal published by Wiley-VCH GmbH.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3730-5b67b97ba384054654ec2ed947b75fc392275bfb6fc7948fa41b426db40fd5b83</citedby><cites>FETCH-LOGICAL-c3730-5b67b97ba384054654ec2ed947b75fc392275bfb6fc7948fa41b426db40fd5b83</cites><orcidid>0000-0003-0905-2547</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38380867$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Lijun</creatorcontrib><creatorcontrib>Shi, Xiao‐Lei</creatorcontrib><creatorcontrib>Li, Lvzhou</creatorcontrib><creatorcontrib>Hong, Min</creatorcontrib><creatorcontrib>Lin, Bencai</creatorcontrib><creatorcontrib>Miao, Pengcheng</creatorcontrib><creatorcontrib>Ding, Jianning</creatorcontrib><creatorcontrib>Yuan, Ningyi</creatorcontrib><creatorcontrib>Zheng, Shuqi</creatorcontrib><creatorcontrib>Chen, Zhi‐Gang</creatorcontrib><title>Zinc Doping Induces Enhanced Thermoelectric Performance of Solvothermal SnTe</title><title>Chemistry, an Asian journal</title><addtitle>Chem Asian J</addtitle><description>The creation of hierarchical nanostructures can effectively strengthen phonon scattering to reduce lattice thermal conductivity for improving thermoelectric properties in inorganic solids. Here, we use Zn doping to induce a remarkable reduction in the lattice thermal conductivity in SnTe, approaching the theoretical minimum limit. Microstructure analysis reveals that ZnTe nanoprecipitates can embed within SnTe grains beyond the solubility limit of Zn in the Zn alloyed SnTe. These nanoprecipitates result in a substantial decrease of the lattice thermal conductivity in SnTe, leading to an ultralow lattice thermal conductivity of 0.50 W m−1 K−1 at 773 K and a peak ZT of ~0.48 at 773 K, marking an approximately 45 % enhancement compared to pristine SnTe. This study underscores the effectiveness of incorporating ZnTe nanoprecipitates in boosting the thermoelectric performance of SnTe‐based materials.
We report a microwave‐assisted wet chemical method for doping Zn into SnTe thermoelectric materials to in‐situ induce rich ZnTe nanoprecipitates, nanopores, a large number of grain boundaries and other multi‐dimensional defects. While ensuring competitive electrical transport performance, the introduced multi‐dimensional defects induced phonon scattering across the entire scale, reducing the lattice thermal conductivity of SnTe to the amorphous limit and enhancing its thermoelectric performance.</description><subject>Doping</subject><subject>Heat transfer</subject><subject>lattice thermal conductivity</subject><subject>nanoprecipitate</subject><subject>SnTe</subject><subject>Thermal conductivity</subject><subject>thermoelectric materials</subject><subject>Thermoelectricity</subject><subject>Tin tellurides</subject><subject>Zinc tellurides</subject><subject>ZnTe</subject><issn>1861-4728</issn><issn>1861-471X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkM9r2zAUgMXoWPpj1x2LoZddkj7rhyUdQ5p2gUAHSWHsIiRZahxsK5Pijvz3tUmWwS476YG-9_H4EPqSwyQHwPc6VXqCAVOAnMAHdJmLIh9Tnv-4OM9YjNBVSlsAhkGKT2hEBBEgCn6Jlj-r1mYPYVe1r9miLTvrUjZvN7q1rszWGxeb4Gpn97Gy2XcXfYjN8JcFn61C_Rb2A6LrbNWu3Q366HWd3OfTe41eHufr2bfx8vlpMZsux5ZwAmNmCm4kN5oICowWjDqLXSkpN5x5SyTGnBlvCm-5pMJrmhuKi9JQ8CUzglyjr0fvLoZfnUt71VTJurrWrQtdUlhiyYiEgvTo3T_oNnSx7a9TBBiTeEjRU5MjZWNIKTqvdrFqdDyoHNTQWQ2d1blzv3B70namceUZ_xO2B-QR-F3V7vAfnZquFtO_8nf0o4iS</recordid><startdate>20240517</startdate><enddate>20240517</enddate><creator>Wang, Lijun</creator><creator>Shi, Xiao‐Lei</creator><creator>Li, Lvzhou</creator><creator>Hong, Min</creator><creator>Lin, Bencai</creator><creator>Miao, Pengcheng</creator><creator>Ding, Jianning</creator><creator>Yuan, Ningyi</creator><creator>Zheng, Shuqi</creator><creator>Chen, Zhi‐Gang</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0905-2547</orcidid></search><sort><creationdate>20240517</creationdate><title>Zinc Doping Induces Enhanced Thermoelectric Performance of Solvothermal SnTe</title><author>Wang, Lijun ; Shi, Xiao‐Lei ; Li, Lvzhou ; Hong, Min ; Lin, Bencai ; Miao, Pengcheng ; Ding, Jianning ; Yuan, Ningyi ; Zheng, Shuqi ; Chen, Zhi‐Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3730-5b67b97ba384054654ec2ed947b75fc392275bfb6fc7948fa41b426db40fd5b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Doping</topic><topic>Heat transfer</topic><topic>lattice thermal conductivity</topic><topic>nanoprecipitate</topic><topic>SnTe</topic><topic>Thermal conductivity</topic><topic>thermoelectric materials</topic><topic>Thermoelectricity</topic><topic>Tin tellurides</topic><topic>Zinc tellurides</topic><topic>ZnTe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lijun</creatorcontrib><creatorcontrib>Shi, Xiao‐Lei</creatorcontrib><creatorcontrib>Li, Lvzhou</creatorcontrib><creatorcontrib>Hong, Min</creatorcontrib><creatorcontrib>Lin, Bencai</creatorcontrib><creatorcontrib>Miao, Pengcheng</creatorcontrib><creatorcontrib>Ding, Jianning</creatorcontrib><creatorcontrib>Yuan, Ningyi</creatorcontrib><creatorcontrib>Zheng, Shuqi</creatorcontrib><creatorcontrib>Chen, Zhi‐Gang</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry, an Asian journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lijun</au><au>Shi, Xiao‐Lei</au><au>Li, Lvzhou</au><au>Hong, Min</au><au>Lin, Bencai</au><au>Miao, Pengcheng</au><au>Ding, Jianning</au><au>Yuan, Ningyi</au><au>Zheng, Shuqi</au><au>Chen, Zhi‐Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zinc Doping Induces Enhanced Thermoelectric Performance of Solvothermal SnTe</atitle><jtitle>Chemistry, an Asian journal</jtitle><addtitle>Chem Asian J</addtitle><date>2024-05-17</date><risdate>2024</risdate><volume>19</volume><issue>10</issue><spage>e202400130</spage><epage>n/a</epage><pages>e202400130-n/a</pages><issn>1861-4728</issn><eissn>1861-471X</eissn><abstract>The creation of hierarchical nanostructures can effectively strengthen phonon scattering to reduce lattice thermal conductivity for improving thermoelectric properties in inorganic solids. Here, we use Zn doping to induce a remarkable reduction in the lattice thermal conductivity in SnTe, approaching the theoretical minimum limit. Microstructure analysis reveals that ZnTe nanoprecipitates can embed within SnTe grains beyond the solubility limit of Zn in the Zn alloyed SnTe. These nanoprecipitates result in a substantial decrease of the lattice thermal conductivity in SnTe, leading to an ultralow lattice thermal conductivity of 0.50 W m−1 K−1 at 773 K and a peak ZT of ~0.48 at 773 K, marking an approximately 45 % enhancement compared to pristine SnTe. This study underscores the effectiveness of incorporating ZnTe nanoprecipitates in boosting the thermoelectric performance of SnTe‐based materials.
We report a microwave‐assisted wet chemical method for doping Zn into SnTe thermoelectric materials to in‐situ induce rich ZnTe nanoprecipitates, nanopores, a large number of grain boundaries and other multi‐dimensional defects. While ensuring competitive electrical transport performance, the introduced multi‐dimensional defects induced phonon scattering across the entire scale, reducing the lattice thermal conductivity of SnTe to the amorphous limit and enhancing its thermoelectric performance.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38380867</pmid><doi>10.1002/asia.202400130</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0905-2547</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1861-4728 |
ispartof | Chemistry, an Asian journal, 2024-05, Vol.19 (10), p.e202400130-n/a |
issn | 1861-4728 1861-471X |
language | eng |
recordid | cdi_proquest_miscellaneous_2929539063 |
source | Wiley |
subjects | Doping Heat transfer lattice thermal conductivity nanoprecipitate SnTe Thermal conductivity thermoelectric materials Thermoelectricity Tin tellurides Zinc tellurides ZnTe |
title | Zinc Doping Induces Enhanced Thermoelectric Performance of Solvothermal SnTe |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zinc%20Doping%20Induces%20Enhanced%20Thermoelectric%20Performance%20of%20Solvothermal%20SnTe&rft.jtitle=Chemistry,%20an%20Asian%20journal&rft.au=Wang,%20Lijun&rft.date=2024-05-17&rft.volume=19&rft.issue=10&rft.spage=e202400130&rft.epage=n/a&rft.pages=e202400130-n/a&rft.issn=1861-4728&rft.eissn=1861-471X&rft_id=info:doi/10.1002/asia.202400130&rft_dat=%3Cproquest_cross%3E3055923838%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3730-5b67b97ba384054654ec2ed947b75fc392275bfb6fc7948fa41b426db40fd5b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3055923838&rft_id=info:pmid/38380867&rfr_iscdi=true |