Loading…

Facile synthesis of gold nanostars for the duplex detection of pesticide residues in grapes using SERS

In recent years, concerns have been raised regarding the contamination of grapes with pesticide residues. As consumer demand for safer food products grows, regular monitoring of pesticide residues in food has become essential. This study sought to develop a rapid and sensitive technique for detectin...

Full description

Saved in:
Bibliographic Details
Published in:Journal of food science 2024-04, Vol.89 (4), p.2512-2521
Main Authors: Zhai, Kairui, Sun, Lin, Nguyen, Trang H. D., Lin, Mengshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, concerns have been raised regarding the contamination of grapes with pesticide residues. As consumer demand for safer food products grows, regular monitoring of pesticide residues in food has become essential. This study sought to develop a rapid and sensitive technique for detecting two specific pesticides (phosmet and paraquat) present on the grape surface using the surface‐enhanced Raman spectroscopy (SERS) method. Gold nanostars (AuNS) particles were synthesized, featuring spiky tips that act as hot spots for localized surface plasmon resonance, thereby enhancing Raman signals. Additionally, the roughened surface of AuNS increases the surface area, resulting in improved interactions between the substrate and analyte molecules. Prominent Raman peaks of mixed contaminants were acquired and used to characterize and quantify the pesticides. It was observed that the SERS intensity of the Raman peaks changed in proportion to the concentration ratio of phosmet and paraquat. Moreover, AuNS exhibited superior SERS enhancement compared to gold nanoparticles. The results demonstrate that the lowest detectable concentration for both pesticides on grape surfaces is 0.5 mg/kg. These findings suggest that SERS coupled with AuNS constitutes a practical and promising approach for detecting and quantifying trace contaminants in food. Practical Application This research established a novel surface‐enhanced Raman spectroscopy (SERS) method coupled with a simplified extraction protocol and gold nanostar substrates to detect trace levels of pesticides in fresh produce. The detection limits meet the maximum residue limits set by the EPA. This substrate has great potential for rapid measurements of chemical contaminants in foods.
ISSN:0022-1147
1750-3841
DOI:10.1111/1750-3841.16986