Loading…
High-end server system partitioning for cost reduction
In this paper, we demonstrate the use of finite-dimension linear programming to maximize the number of partial good multicore processor chips in a symmetric multiprocessing (SMP) node of a given logical size and physical footprint. It is asserted that to the first order the cost of a productized pro...
Saved in:
Published in: | IEEE transactions on advanced packaging 2006-02, Vol.29 (1), p.5-10 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we demonstrate the use of finite-dimension linear programming to maximize the number of partial good multicore processor chips in a symmetric multiprocessing (SMP) node of a given logical size and physical footprint. It is asserted that to the first order the cost of a productized processor chip will be proportional to the scrap of a processor chip containing good cores but being unusable for the implementation of an SMP node. Therefore, the tradeoff between the number of processing units (PUs) on a chip and the total number of PUs on an SMP node is examined. This paper shows that an optimized SMP offering can be found so that the total chip cost of a high-end system can be minimized. However, such cost reduction will limit the SMP node size for a given processor chip yield. It will also be shown that as the chip yield improves the SMP node size that can be profitably implemented will increase. |
---|---|
ISSN: | 1521-3323 1557-9980 |
DOI: | 10.1109/TADVP.2005.862644 |