Loading…

Method to improve geometry for heat transfer enhancement in PCM composite heat sinks

Use of composite heat sinks (CHS), constructed using a vertical array of ‘fins’ (or elemental composite heat sink, ECHS), made of large latent heat capacity phase change materials (PCM) and highly conductive base material (BM) is a much sought cooling method for portable electronic devices, which ar...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer 2005-06, Vol.48 (13), p.2759-2770
Main Authors: Akhilesh, R., Narasimhan, Arunn, Balaji, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c403t-f593ae333f8c40d6abd4cbb0034fd6b5aef1f2d60769be5e77e50188833f1ede3
cites cdi_FETCH-LOGICAL-c403t-f593ae333f8c40d6abd4cbb0034fd6b5aef1f2d60769be5e77e50188833f1ede3
container_end_page 2770
container_issue 13
container_start_page 2759
container_title International journal of heat and mass transfer
container_volume 48
creator Akhilesh, R.
Narasimhan, Arunn
Balaji, C.
description Use of composite heat sinks (CHS), constructed using a vertical array of ‘fins’ (or elemental composite heat sink, ECHS), made of large latent heat capacity phase change materials (PCM) and highly conductive base material (BM) is a much sought cooling method for portable electronic devices, which are to be kept below a set point temperature (SPT). This paper presents a thermal design procedure for proper sizing of such CHS, for maximizing the energy storage and the time of operation until all of the latent heat storage is exhausted. For a given range of heat flux, q″, and height, A, of the CHS, using a scaling analysis of the governing two dimensional unsteady energy equations, a relation between the critical dimension for the ECHS and the amount of PCM used ( ϕ) is determined. For a ϕ, when the dimensions of the ECHS are less than this critical dimension, all of the PCM completely melts when the CHS reaches the SPT. The results are further validated using appropriate numerical method solutions. A proposed correlation for chosen material properties yields predictions of the critical dimensions within 10% average deviation. However, the thermal design procedure detailed in this paper is valid, in general, for similar finned-CHS configurations, composed of any high latent heat storage PCM and high conductive BM combination.
doi_str_mv 10.1016/j.ijheatmasstransfer.2005.01.032
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29297824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931005001419</els_id><sourcerecordid>29297824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-f593ae333f8c40d6abd4cbb0034fd6b5aef1f2d60769be5e77e50188833f1ede3</originalsourceid><addsrcrecordid>eNqNkE1PGzEQhq2qlZqm_Q--UHHZZbzez1tRVFoQiB7Ss-X1jhuH7Dr1OJH493gVEAcunKyxnnlf-2HsXEAuQNQX29xtN6jjqIli0BNZDHkBUOUgcpDFB7YQbdNlhWi7j2wBIJqskwI-sy9E23mEsl6w9R3GjR949NyN--CPyP-hHzGGR2594HMFf8nnOG30ZHDEKXI38T-rO278uPfkIp5QctMDfWWfrN4Rfns-l-zv1c_16nd2e__renV5m5kSZMxs1UmNUkrbpouh1v1Qmr4HkKUd6r7SaIUthhqauuuxwqbBCkTbtmlD4IByyb6fctPD_x-QohodGdzt9IT-QKroiq5pizKBP06gCZ4ooFX74EYdHpUANetUW_VWp5p1KhAq6UwRZ89dmoze2cQYR685ddOUAurE3Zw4TB8_upRCxmGSNriAJqrBu_eXPgHtuZlj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29297824</pqid></control><display><type>article</type><title>Method to improve geometry for heat transfer enhancement in PCM composite heat sinks</title><source>ScienceDirect Journals</source><creator>Akhilesh, R. ; Narasimhan, Arunn ; Balaji, C.</creator><creatorcontrib>Akhilesh, R. ; Narasimhan, Arunn ; Balaji, C.</creatorcontrib><description>Use of composite heat sinks (CHS), constructed using a vertical array of ‘fins’ (or elemental composite heat sink, ECHS), made of large latent heat capacity phase change materials (PCM) and highly conductive base material (BM) is a much sought cooling method for portable electronic devices, which are to be kept below a set point temperature (SPT). This paper presents a thermal design procedure for proper sizing of such CHS, for maximizing the energy storage and the time of operation until all of the latent heat storage is exhausted. For a given range of heat flux, q″, and height, A, of the CHS, using a scaling analysis of the governing two dimensional unsteady energy equations, a relation between the critical dimension for the ECHS and the amount of PCM used ( ϕ) is determined. For a ϕ, when the dimensions of the ECHS are less than this critical dimension, all of the PCM completely melts when the CHS reaches the SPT. The results are further validated using appropriate numerical method solutions. A proposed correlation for chosen material properties yields predictions of the critical dimensions within 10% average deviation. However, the thermal design procedure detailed in this paper is valid, in general, for similar finned-CHS configurations, composed of any high latent heat storage PCM and high conductive BM combination.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2005.01.032</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Composite heat sink ; Design. Technologies. Operation analysis. Testing ; Electronics ; Electronics cooling ; Exact sciences and technology ; Heat transfer enhancement ; Integrated circuits ; Phase change material ; Scale analysis ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><ispartof>International journal of heat and mass transfer, 2005-06, Vol.48 (13), p.2759-2770</ispartof><rights>2005 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-f593ae333f8c40d6abd4cbb0034fd6b5aef1f2d60769be5e77e50188833f1ede3</citedby><cites>FETCH-LOGICAL-c403t-f593ae333f8c40d6abd4cbb0034fd6b5aef1f2d60769be5e77e50188833f1ede3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16774106$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Akhilesh, R.</creatorcontrib><creatorcontrib>Narasimhan, Arunn</creatorcontrib><creatorcontrib>Balaji, C.</creatorcontrib><title>Method to improve geometry for heat transfer enhancement in PCM composite heat sinks</title><title>International journal of heat and mass transfer</title><description>Use of composite heat sinks (CHS), constructed using a vertical array of ‘fins’ (or elemental composite heat sink, ECHS), made of large latent heat capacity phase change materials (PCM) and highly conductive base material (BM) is a much sought cooling method for portable electronic devices, which are to be kept below a set point temperature (SPT). This paper presents a thermal design procedure for proper sizing of such CHS, for maximizing the energy storage and the time of operation until all of the latent heat storage is exhausted. For a given range of heat flux, q″, and height, A, of the CHS, using a scaling analysis of the governing two dimensional unsteady energy equations, a relation between the critical dimension for the ECHS and the amount of PCM used ( ϕ) is determined. For a ϕ, when the dimensions of the ECHS are less than this critical dimension, all of the PCM completely melts when the CHS reaches the SPT. The results are further validated using appropriate numerical method solutions. A proposed correlation for chosen material properties yields predictions of the critical dimensions within 10% average deviation. However, the thermal design procedure detailed in this paper is valid, in general, for similar finned-CHS configurations, composed of any high latent heat storage PCM and high conductive BM combination.</description><subject>Applied sciences</subject><subject>Composite heat sink</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Electronics</subject><subject>Electronics cooling</subject><subject>Exact sciences and technology</subject><subject>Heat transfer enhancement</subject><subject>Integrated circuits</subject><subject>Phase change material</subject><subject>Scale analysis</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PGzEQhq2qlZqm_Q--UHHZZbzez1tRVFoQiB7Ss-X1jhuH7Dr1OJH493gVEAcunKyxnnlf-2HsXEAuQNQX29xtN6jjqIli0BNZDHkBUOUgcpDFB7YQbdNlhWi7j2wBIJqskwI-sy9E23mEsl6w9R3GjR949NyN--CPyP-hHzGGR2594HMFf8nnOG30ZHDEKXI38T-rO278uPfkIp5QctMDfWWfrN4Rfns-l-zv1c_16nd2e__renV5m5kSZMxs1UmNUkrbpouh1v1Qmr4HkKUd6r7SaIUthhqauuuxwqbBCkTbtmlD4IByyb6fctPD_x-QohodGdzt9IT-QKroiq5pizKBP06gCZ4ooFX74EYdHpUANetUW_VWp5p1KhAq6UwRZ89dmoze2cQYR685ddOUAurE3Zw4TB8_upRCxmGSNriAJqrBu_eXPgHtuZlj</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Akhilesh, R.</creator><creator>Narasimhan, Arunn</creator><creator>Balaji, C.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20050601</creationdate><title>Method to improve geometry for heat transfer enhancement in PCM composite heat sinks</title><author>Akhilesh, R. ; Narasimhan, Arunn ; Balaji, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-f593ae333f8c40d6abd4cbb0034fd6b5aef1f2d60769be5e77e50188833f1ede3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Composite heat sink</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Electronics</topic><topic>Electronics cooling</topic><topic>Exact sciences and technology</topic><topic>Heat transfer enhancement</topic><topic>Integrated circuits</topic><topic>Phase change material</topic><topic>Scale analysis</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akhilesh, R.</creatorcontrib><creatorcontrib>Narasimhan, Arunn</creatorcontrib><creatorcontrib>Balaji, C.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akhilesh, R.</au><au>Narasimhan, Arunn</au><au>Balaji, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Method to improve geometry for heat transfer enhancement in PCM composite heat sinks</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2005-06-01</date><risdate>2005</risdate><volume>48</volume><issue>13</issue><spage>2759</spage><epage>2770</epage><pages>2759-2770</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>Use of composite heat sinks (CHS), constructed using a vertical array of ‘fins’ (or elemental composite heat sink, ECHS), made of large latent heat capacity phase change materials (PCM) and highly conductive base material (BM) is a much sought cooling method for portable electronic devices, which are to be kept below a set point temperature (SPT). This paper presents a thermal design procedure for proper sizing of such CHS, for maximizing the energy storage and the time of operation until all of the latent heat storage is exhausted. For a given range of heat flux, q″, and height, A, of the CHS, using a scaling analysis of the governing two dimensional unsteady energy equations, a relation between the critical dimension for the ECHS and the amount of PCM used ( ϕ) is determined. For a ϕ, when the dimensions of the ECHS are less than this critical dimension, all of the PCM completely melts when the CHS reaches the SPT. The results are further validated using appropriate numerical method solutions. A proposed correlation for chosen material properties yields predictions of the critical dimensions within 10% average deviation. However, the thermal design procedure detailed in this paper is valid, in general, for similar finned-CHS configurations, composed of any high latent heat storage PCM and high conductive BM combination.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2005.01.032</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2005-06, Vol.48 (13), p.2759-2770
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_29297824
source ScienceDirect Journals
subjects Applied sciences
Composite heat sink
Design. Technologies. Operation analysis. Testing
Electronics
Electronics cooling
Exact sciences and technology
Heat transfer enhancement
Integrated circuits
Phase change material
Scale analysis
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
title Method to improve geometry for heat transfer enhancement in PCM composite heat sinks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A01%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Method%20to%20improve%20geometry%20for%20heat%20transfer%20enhancement%20in%20PCM%20composite%20heat%20sinks&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Akhilesh,%20R.&rft.date=2005-06-01&rft.volume=48&rft.issue=13&rft.spage=2759&rft.epage=2770&rft.pages=2759-2770&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2005.01.032&rft_dat=%3Cproquest_cross%3E29297824%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c403t-f593ae333f8c40d6abd4cbb0034fd6b5aef1f2d60769be5e77e50188833f1ede3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29297824&rft_id=info:pmid/&rfr_iscdi=true