Loading…
Caudally pronounced deficiencies in preplate splitting and migration underly a rostro-caudal progression of cortical lamination defects in the reeler brain
Abstract In mammalian neocortex development, every cohort of newborn neurons is guided toward the marginal zone, leading to an “inside-out” organization of the 6 neocortical layers. This migratory pattern is regulated by the extracellular glycoprotein Reelin. The reeler mouse shows a homozygous muta...
Saved in:
Published in: | Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2024-01, Vol.34 (2) |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c284t-179cc6666cb739d895706b99e575c5b86fcd69d80158bd1ca9d622b6de6be13f3 |
container_end_page | |
container_issue | 2 |
container_start_page | |
container_title | Cerebral cortex (New York, N.Y. 1991) |
container_volume | 34 |
creator | Mingo-Moreno, Nieves Truschow, Pavel Staiger, Jochen F Wagener, Robin J |
description | Abstract
In mammalian neocortex development, every cohort of newborn neurons is guided toward the marginal zone, leading to an “inside-out” organization of the 6 neocortical layers. This migratory pattern is regulated by the extracellular glycoprotein Reelin. The reeler mouse shows a homozygous mutation of the reelin gene. Using RNA in situ hybridization we could demonstrate that the Reelin-deficient mouse cortex (male and female) displays an increasing lamination defect along the rostro-caudal axis that is characterized by strong cellular intermingling, but roughly reproduces the “inside-out” pattern in rostral cortex, while caudal cortex shows a relative inversion of neuronal positioning (“outside-in”). We found that in development of the reeler cortex, preplate-splitting is also defective with an increasing severity along the rostro-caudal axis. This leads to a misplacement of subplate neurons that are crucial for a switch in migration mode within the cortical plate. Using Flash Tag labeling and nucleoside analog pulse-chasing, we found an according migration defect within the cortical plate, again with a progressive severity along the rostro-caudal axis. Thus, loss of one key player in neocortical development leads to highly area-specific (caudally pronounced) developmental deficiencies that result in multiple roughly opposite rostral versus caudal adult neocortical phenotypes. |
doi_str_mv | 10.1093/cercor/bhae023 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2930472811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/cercor/bhae023</oup_id><sourcerecordid>2930472811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-179cc6666cb739d895706b99e575c5b86fcd69d80158bd1ca9d622b6de6be13f3</originalsourceid><addsrcrecordid>eNqFkclOBCEQhonROG5Xj4ajHlqBnl44molbYuJFzx2W6hkMDS3QB5_Fl5WxR69CCKT46q-CH6FzSq4p4eWNgqB8uJEbAYSVe-iILmtSMMr5fj6TZVOUjNIFOo7xnRDasIodokXZ5tkwdoS-VmLSwtpPPAbv_OQUaKyhN8qAyyti4_IVjFYkwHG0JiXj1lg4jQezDiIZ7_DkNISsIXDwMQVfqB_VreY6QIxbxvc4d5qMynErBuPm1FwLVPopkzaAA4CFgGUQxp2ig17YCGe7_QS93d-9rh6L55eHp9Xtc6FYu0wFbbhSdR5KNiXXLa8aUkvOoWoqVcm27pWuc5zQqpWaKsF1zZisNdQSaNmXJ-hy1s3tfkwQUzeYqMBa4cBPsWO8zB_JWkozej2jKj80Bui7MZhBhM-Okm5rSDcb0u0MyQkXO-1JDqD_8F8HMnA1A34a_xP7Bnhsm6E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2930472811</pqid></control><display><type>article</type><title>Caudally pronounced deficiencies in preplate splitting and migration underly a rostro-caudal progression of cortical lamination defects in the reeler brain</title><source>Oxford Journals Online</source><creator>Mingo-Moreno, Nieves ; Truschow, Pavel ; Staiger, Jochen F ; Wagener, Robin J</creator><creatorcontrib>Mingo-Moreno, Nieves ; Truschow, Pavel ; Staiger, Jochen F ; Wagener, Robin J</creatorcontrib><description>Abstract
In mammalian neocortex development, every cohort of newborn neurons is guided toward the marginal zone, leading to an “inside-out” organization of the 6 neocortical layers. This migratory pattern is regulated by the extracellular glycoprotein Reelin. The reeler mouse shows a homozygous mutation of the reelin gene. Using RNA in situ hybridization we could demonstrate that the Reelin-deficient mouse cortex (male and female) displays an increasing lamination defect along the rostro-caudal axis that is characterized by strong cellular intermingling, but roughly reproduces the “inside-out” pattern in rostral cortex, while caudal cortex shows a relative inversion of neuronal positioning (“outside-in”). We found that in development of the reeler cortex, preplate-splitting is also defective with an increasing severity along the rostro-caudal axis. This leads to a misplacement of subplate neurons that are crucial for a switch in migration mode within the cortical plate. Using Flash Tag labeling and nucleoside analog pulse-chasing, we found an according migration defect within the cortical plate, again with a progressive severity along the rostro-caudal axis. Thus, loss of one key player in neocortical development leads to highly area-specific (caudally pronounced) developmental deficiencies that result in multiple roughly opposite rostral versus caudal adult neocortical phenotypes.</description><identifier>ISSN: 1047-3211</identifier><identifier>EISSN: 1460-2199</identifier><identifier>DOI: 10.1093/cercor/bhae023</identifier><identifier>PMID: 38383722</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><ispartof>Cerebral cortex (New York, N.Y. 1991), 2024-01, Vol.34 (2)</ispartof><rights>The Author(s) 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2024</rights><rights>The Author(s) 2024. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c284t-179cc6666cb739d895706b99e575c5b86fcd69d80158bd1ca9d622b6de6be13f3</cites><orcidid>0000-0002-8762-833X ; 0000-0001-5694-9723</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38383722$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mingo-Moreno, Nieves</creatorcontrib><creatorcontrib>Truschow, Pavel</creatorcontrib><creatorcontrib>Staiger, Jochen F</creatorcontrib><creatorcontrib>Wagener, Robin J</creatorcontrib><title>Caudally pronounced deficiencies in preplate splitting and migration underly a rostro-caudal progression of cortical lamination defects in the reeler brain</title><title>Cerebral cortex (New York, N.Y. 1991)</title><addtitle>Cereb Cortex</addtitle><description>Abstract
In mammalian neocortex development, every cohort of newborn neurons is guided toward the marginal zone, leading to an “inside-out” organization of the 6 neocortical layers. This migratory pattern is regulated by the extracellular glycoprotein Reelin. The reeler mouse shows a homozygous mutation of the reelin gene. Using RNA in situ hybridization we could demonstrate that the Reelin-deficient mouse cortex (male and female) displays an increasing lamination defect along the rostro-caudal axis that is characterized by strong cellular intermingling, but roughly reproduces the “inside-out” pattern in rostral cortex, while caudal cortex shows a relative inversion of neuronal positioning (“outside-in”). We found that in development of the reeler cortex, preplate-splitting is also defective with an increasing severity along the rostro-caudal axis. This leads to a misplacement of subplate neurons that are crucial for a switch in migration mode within the cortical plate. Using Flash Tag labeling and nucleoside analog pulse-chasing, we found an according migration defect within the cortical plate, again with a progressive severity along the rostro-caudal axis. Thus, loss of one key player in neocortical development leads to highly area-specific (caudally pronounced) developmental deficiencies that result in multiple roughly opposite rostral versus caudal adult neocortical phenotypes.</description><issn>1047-3211</issn><issn>1460-2199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkclOBCEQhonROG5Xj4ajHlqBnl44molbYuJFzx2W6hkMDS3QB5_Fl5WxR69CCKT46q-CH6FzSq4p4eWNgqB8uJEbAYSVe-iILmtSMMr5fj6TZVOUjNIFOo7xnRDasIodokXZ5tkwdoS-VmLSwtpPPAbv_OQUaKyhN8qAyyti4_IVjFYkwHG0JiXj1lg4jQezDiIZ7_DkNISsIXDwMQVfqB_VreY6QIxbxvc4d5qMynErBuPm1FwLVPopkzaAA4CFgGUQxp2ig17YCGe7_QS93d-9rh6L55eHp9Xtc6FYu0wFbbhSdR5KNiXXLa8aUkvOoWoqVcm27pWuc5zQqpWaKsF1zZisNdQSaNmXJ-hy1s3tfkwQUzeYqMBa4cBPsWO8zB_JWkozej2jKj80Bui7MZhBhM-Okm5rSDcb0u0MyQkXO-1JDqD_8F8HMnA1A34a_xP7Bnhsm6E</recordid><startdate>20240131</startdate><enddate>20240131</enddate><creator>Mingo-Moreno, Nieves</creator><creator>Truschow, Pavel</creator><creator>Staiger, Jochen F</creator><creator>Wagener, Robin J</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8762-833X</orcidid><orcidid>https://orcid.org/0000-0001-5694-9723</orcidid></search><sort><creationdate>20240131</creationdate><title>Caudally pronounced deficiencies in preplate splitting and migration underly a rostro-caudal progression of cortical lamination defects in the reeler brain</title><author>Mingo-Moreno, Nieves ; Truschow, Pavel ; Staiger, Jochen F ; Wagener, Robin J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-179cc6666cb739d895706b99e575c5b86fcd69d80158bd1ca9d622b6de6be13f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mingo-Moreno, Nieves</creatorcontrib><creatorcontrib>Truschow, Pavel</creatorcontrib><creatorcontrib>Staiger, Jochen F</creatorcontrib><creatorcontrib>Wagener, Robin J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mingo-Moreno, Nieves</au><au>Truschow, Pavel</au><au>Staiger, Jochen F</au><au>Wagener, Robin J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Caudally pronounced deficiencies in preplate splitting and migration underly a rostro-caudal progression of cortical lamination defects in the reeler brain</atitle><jtitle>Cerebral cortex (New York, N.Y. 1991)</jtitle><addtitle>Cereb Cortex</addtitle><date>2024-01-31</date><risdate>2024</risdate><volume>34</volume><issue>2</issue><issn>1047-3211</issn><eissn>1460-2199</eissn><abstract>Abstract
In mammalian neocortex development, every cohort of newborn neurons is guided toward the marginal zone, leading to an “inside-out” organization of the 6 neocortical layers. This migratory pattern is regulated by the extracellular glycoprotein Reelin. The reeler mouse shows a homozygous mutation of the reelin gene. Using RNA in situ hybridization we could demonstrate that the Reelin-deficient mouse cortex (male and female) displays an increasing lamination defect along the rostro-caudal axis that is characterized by strong cellular intermingling, but roughly reproduces the “inside-out” pattern in rostral cortex, while caudal cortex shows a relative inversion of neuronal positioning (“outside-in”). We found that in development of the reeler cortex, preplate-splitting is also defective with an increasing severity along the rostro-caudal axis. This leads to a misplacement of subplate neurons that are crucial for a switch in migration mode within the cortical plate. Using Flash Tag labeling and nucleoside analog pulse-chasing, we found an according migration defect within the cortical plate, again with a progressive severity along the rostro-caudal axis. Thus, loss of one key player in neocortical development leads to highly area-specific (caudally pronounced) developmental deficiencies that result in multiple roughly opposite rostral versus caudal adult neocortical phenotypes.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>38383722</pmid><doi>10.1093/cercor/bhae023</doi><orcidid>https://orcid.org/0000-0002-8762-833X</orcidid><orcidid>https://orcid.org/0000-0001-5694-9723</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1047-3211 |
ispartof | Cerebral cortex (New York, N.Y. 1991), 2024-01, Vol.34 (2) |
issn | 1047-3211 1460-2199 |
language | eng |
recordid | cdi_proquest_miscellaneous_2930472811 |
source | Oxford Journals Online |
title | Caudally pronounced deficiencies in preplate splitting and migration underly a rostro-caudal progression of cortical lamination defects in the reeler brain |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A09%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Caudally%20pronounced%20deficiencies%20in%20preplate%20splitting%20and%20migration%20underly%20a%20rostro-caudal%20progression%20of%20cortical%20lamination%20defects%20in%20the%20reeler%20brain&rft.jtitle=Cerebral%20cortex%20(New%20York,%20N.Y.%201991)&rft.au=Mingo-Moreno,%20Nieves&rft.date=2024-01-31&rft.volume=34&rft.issue=2&rft.issn=1047-3211&rft.eissn=1460-2199&rft_id=info:doi/10.1093/cercor/bhae023&rft_dat=%3Cproquest_cross%3E2930472811%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c284t-179cc6666cb739d895706b99e575c5b86fcd69d80158bd1ca9d622b6de6be13f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2930472811&rft_id=info:pmid/38383722&rft_oup_id=10.1093/cercor/bhae023&rfr_iscdi=true |