Loading…

Supercritical CO2 dispersion of nano-clays and clay/polymer nanocomposites

Dispersed polymer/clay nanocomposites are of great interest because they can significantly improve the properties of existing polymeric materials. However, achieving a high level of clay dispersion has been a key challenge in the production of polymer/clay nanocomposites. In this paper, we explore a...

Full description

Saved in:
Bibliographic Details
Published in:Polymer (Guilford) 2006-10, Vol.47 (21), p.7485-7496
Main Authors: HORSCH, Steven, SERHATKULU, Gulay, GULARI, Esin, KANNAN, Rangaramanujam M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Dispersed polymer/clay nanocomposites are of great interest because they can significantly improve the properties of existing polymeric materials. However, achieving a high level of clay dispersion has been a key challenge in the production of polymer/clay nanocomposites. In this paper, we explore a novel supercritical carbon dioxide (scCO2) processing method that utilizes scCO2 to disperse nano-clays. The structure and properties of the clays and the resultant nanocomposites are characterized using a combination of wide-angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and rheology. Significant dispersion was achieved with dry Cloisite 93A clay, whereas relatively poor dispersion was achieved with dry Cloisite Na+(natural clay). The extent of clay dispersion appears to be dependent on the 'CO2-philicity', which in turn appears to depend on the surface modifications and inter-gallery spacing. The presence of an acidic hydrogen on the surfactant in Cloisite 93A appears to play a strong role in its 'CO2-philicity'. The ability to delarninate dry clays is significant because it will likely increase the ability to produce dispersed clay/polymer nanocomposites via melt processing. In addition to delaminating dry clays, we demonstrate that CO2-phobic Cloisite Na+ (natural clay) can be partially dispersed with scCO2) using a CO2-philic polymer, polydimethylsiloxane (PDMS). The dispersed clay/PDMS nanocomposite shows an order of magnitude increase in the dynamic storage modulus at low frequencies, accompanied by the emergence of a 'solid-like' plateau, characteristic of dispersed nanocomposites with enhanced clay/polymer interactions.
ISSN:0032-3861
1873-2291
DOI:10.1016/j.polymer.2006.08.048