Loading…

HTGR reactor physics and fuel cycle studies

The high-temperature gas-cooled reactor (HTGR) appears as a good candidate for the next generation of nuclear power plants. In the “HTR-N” project of the European Union Fifth Framework Program, analyses have been performed on a number of conceptual HTGR designs, derived from reference pebble-bed and...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear engineering and design 2006-03, Vol.236 (5), p.615-634
Main Authors: Kuijper, J.C., Raepsaet, X., de Haas, J.B.M., von Lensa, W., Ohlig, U., Ruetten, H.-J., Brockmann, H., Damian, F., Dolci, F., Bernnat, W., Oppe, J., Kloosterman, J.L., Cerullo, N., Lomonaco, G., Negrini, A., Magill, J., Seiler, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c442t-3de3724e33867d5d757bbb6b93f0eefa94b011ef54e7fca980cd752d0fc51d113
cites cdi_FETCH-LOGICAL-c442t-3de3724e33867d5d757bbb6b93f0eefa94b011ef54e7fca980cd752d0fc51d113
container_end_page 634
container_issue 5
container_start_page 615
container_title Nuclear engineering and design
container_volume 236
creator Kuijper, J.C.
Raepsaet, X.
de Haas, J.B.M.
von Lensa, W.
Ohlig, U.
Ruetten, H.-J.
Brockmann, H.
Damian, F.
Dolci, F.
Bernnat, W.
Oppe, J.
Kloosterman, J.L.
Cerullo, N.
Lomonaco, G.
Negrini, A.
Magill, J.
Seiler, R.
description The high-temperature gas-cooled reactor (HTGR) appears as a good candidate for the next generation of nuclear power plants. In the “HTR-N” project of the European Union Fifth Framework Program, analyses have been performed on a number of conceptual HTGR designs, derived from reference pebble-bed and hexagonal block-type HTGR types. It is shown that several HTGR concepts are quite promising as systems for the incineration of plutonium and possibly minor actinides. These studies were mainly concerned with the investigation and intercomparison of the plutonium and actinide burning capabilities of a number of HTGR concepts and associated fuel cycles, with emphasis on the use of civil plutonium from spent LWR uranium fuel (first generation Pu) and from spent LWR MOX fuel (second generation Pu). Besides, the “HTR-N” project also included activities concerning the validation of computational tools and the qualification of models. Indeed, it is essential that validated analytical tools are available in the European nuclear community to perform conceptual design studies, industrial calculations (reload calculations and the associated core follow), safety analyses for licensing, etc., for new fuel cycles aiming at plutonium and minor actinide (MA) incineration/transmutation without multi-reprocessing of the discharged fuel. These validation and qualification activities have been centred round the two HTGR systems currently in operation, viz. the HTR-10 and the HTTR. The re-calculation of the HTTR first criticality with a Monte Carlo neutron transport code now yields acceptable correspondence with experimental data. Also calculations by 3D diffusion theory codes yield acceptable results. Special attention, however, has to be given to the modelling of neutron streaming effects. For the HTR-10 the analyses focused on first criticality, temperature coefficients and control rod worth. Also in these studies a good correspondence between calculation and experiment is observed for the 3D diffusion theory codes.
doi_str_mv 10.1016/j.nucengdes.2005.10.021
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29316954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0029549306000161</els_id><sourcerecordid>29316954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-3de3724e33867d5d757bbb6b93f0eefa94b011ef54e7fca980cd752d0fc51d113</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsH78BnPRiyTuR5LtHkvRVigIUsHbspmd1S1pUncTof_ehBY9OpeBmfedl3kIuWE0Y5SVD5us6QGbD4sx45QWwzSjnJ2QCZtKnspCvZ-SCaVcpUWuxDm5iHFDx1J8Qu6X68VrEtBA14Zk97mPHmJiGpu4HusE9lBjErveeoxX5MyZOuL1sV-St6fH9XyZrl4Wz_PZKoU8510qLArJcxRiWkpbWFnIqqrKSglHEZ1ReUUZQ1fkKB0YNaUwaLilDgpmGROX5O5wdxfarx5jp7c-Ata1abDto-ZKsFIV-SCUByGENsaATu-C35qw14zqEY7e6F84eoQzLgY4g_P2GGEimNoF04CPf3ZZDufFmDA76HD499tj0BE8NoDWB4RO29b_m_UDaIV-Fw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29316954</pqid></control><display><type>article</type><title>HTGR reactor physics and fuel cycle studies</title><source>ScienceDirect Freedom Collection</source><creator>Kuijper, J.C. ; Raepsaet, X. ; de Haas, J.B.M. ; von Lensa, W. ; Ohlig, U. ; Ruetten, H.-J. ; Brockmann, H. ; Damian, F. ; Dolci, F. ; Bernnat, W. ; Oppe, J. ; Kloosterman, J.L. ; Cerullo, N. ; Lomonaco, G. ; Negrini, A. ; Magill, J. ; Seiler, R.</creator><creatorcontrib>Kuijper, J.C. ; Raepsaet, X. ; de Haas, J.B.M. ; von Lensa, W. ; Ohlig, U. ; Ruetten, H.-J. ; Brockmann, H. ; Damian, F. ; Dolci, F. ; Bernnat, W. ; Oppe, J. ; Kloosterman, J.L. ; Cerullo, N. ; Lomonaco, G. ; Negrini, A. ; Magill, J. ; Seiler, R.</creatorcontrib><description>The high-temperature gas-cooled reactor (HTGR) appears as a good candidate for the next generation of nuclear power plants. In the “HTR-N” project of the European Union Fifth Framework Program, analyses have been performed on a number of conceptual HTGR designs, derived from reference pebble-bed and hexagonal block-type HTGR types. It is shown that several HTGR concepts are quite promising as systems for the incineration of plutonium and possibly minor actinides. These studies were mainly concerned with the investigation and intercomparison of the plutonium and actinide burning capabilities of a number of HTGR concepts and associated fuel cycles, with emphasis on the use of civil plutonium from spent LWR uranium fuel (first generation Pu) and from spent LWR MOX fuel (second generation Pu). Besides, the “HTR-N” project also included activities concerning the validation of computational tools and the qualification of models. Indeed, it is essential that validated analytical tools are available in the European nuclear community to perform conceptual design studies, industrial calculations (reload calculations and the associated core follow), safety analyses for licensing, etc., for new fuel cycles aiming at plutonium and minor actinide (MA) incineration/transmutation without multi-reprocessing of the discharged fuel. These validation and qualification activities have been centred round the two HTGR systems currently in operation, viz. the HTR-10 and the HTTR. The re-calculation of the HTTR first criticality with a Monte Carlo neutron transport code now yields acceptable correspondence with experimental data. Also calculations by 3D diffusion theory codes yield acceptable results. Special attention, however, has to be given to the modelling of neutron streaming effects. For the HTR-10 the analyses focused on first criticality, temperature coefficients and control rod worth. Also in these studies a good correspondence between calculation and experiment is observed for the 3D diffusion theory codes.</description><identifier>ISSN: 0029-5493</identifier><identifier>EISSN: 1872-759X</identifier><identifier>DOI: 10.1016/j.nucengdes.2005.10.021</identifier><identifier>CODEN: NEDEAU</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; Installations for energy generation and conversion: thermal and electrical energy ; Nuclear fuels ; Preparation and processing of nuclear fuels</subject><ispartof>Nuclear engineering and design, 2006-03, Vol.236 (5), p.615-634</ispartof><rights>2006 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-3de3724e33867d5d757bbb6b93f0eefa94b011ef54e7fca980cd752d0fc51d113</citedby><cites>FETCH-LOGICAL-c442t-3de3724e33867d5d757bbb6b93f0eefa94b011ef54e7fca980cd752d0fc51d113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17654334$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuijper, J.C.</creatorcontrib><creatorcontrib>Raepsaet, X.</creatorcontrib><creatorcontrib>de Haas, J.B.M.</creatorcontrib><creatorcontrib>von Lensa, W.</creatorcontrib><creatorcontrib>Ohlig, U.</creatorcontrib><creatorcontrib>Ruetten, H.-J.</creatorcontrib><creatorcontrib>Brockmann, H.</creatorcontrib><creatorcontrib>Damian, F.</creatorcontrib><creatorcontrib>Dolci, F.</creatorcontrib><creatorcontrib>Bernnat, W.</creatorcontrib><creatorcontrib>Oppe, J.</creatorcontrib><creatorcontrib>Kloosterman, J.L.</creatorcontrib><creatorcontrib>Cerullo, N.</creatorcontrib><creatorcontrib>Lomonaco, G.</creatorcontrib><creatorcontrib>Negrini, A.</creatorcontrib><creatorcontrib>Magill, J.</creatorcontrib><creatorcontrib>Seiler, R.</creatorcontrib><title>HTGR reactor physics and fuel cycle studies</title><title>Nuclear engineering and design</title><description>The high-temperature gas-cooled reactor (HTGR) appears as a good candidate for the next generation of nuclear power plants. In the “HTR-N” project of the European Union Fifth Framework Program, analyses have been performed on a number of conceptual HTGR designs, derived from reference pebble-bed and hexagonal block-type HTGR types. It is shown that several HTGR concepts are quite promising as systems for the incineration of plutonium and possibly minor actinides. These studies were mainly concerned with the investigation and intercomparison of the plutonium and actinide burning capabilities of a number of HTGR concepts and associated fuel cycles, with emphasis on the use of civil plutonium from spent LWR uranium fuel (first generation Pu) and from spent LWR MOX fuel (second generation Pu). Besides, the “HTR-N” project also included activities concerning the validation of computational tools and the qualification of models. Indeed, it is essential that validated analytical tools are available in the European nuclear community to perform conceptual design studies, industrial calculations (reload calculations and the associated core follow), safety analyses for licensing, etc., for new fuel cycles aiming at plutonium and minor actinide (MA) incineration/transmutation without multi-reprocessing of the discharged fuel. These validation and qualification activities have been centred round the two HTGR systems currently in operation, viz. the HTR-10 and the HTTR. The re-calculation of the HTTR first criticality with a Monte Carlo neutron transport code now yields acceptable correspondence with experimental data. Also calculations by 3D diffusion theory codes yield acceptable results. Special attention, however, has to be given to the modelling of neutron streaming effects. For the HTR-10 the analyses focused on first criticality, temperature coefficients and control rod worth. Also in these studies a good correspondence between calculation and experiment is observed for the 3D diffusion theory codes.</description><subject>Applied sciences</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Nuclear fuels</subject><subject>Preparation and processing of nuclear fuels</subject><issn>0029-5493</issn><issn>1872-759X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsH78BnPRiyTuR5LtHkvRVigIUsHbspmd1S1pUncTof_ehBY9OpeBmfedl3kIuWE0Y5SVD5us6QGbD4sx45QWwzSjnJ2QCZtKnspCvZ-SCaVcpUWuxDm5iHFDx1J8Qu6X68VrEtBA14Zk97mPHmJiGpu4HusE9lBjErveeoxX5MyZOuL1sV-St6fH9XyZrl4Wz_PZKoU8510qLArJcxRiWkpbWFnIqqrKSglHEZ1ReUUZQ1fkKB0YNaUwaLilDgpmGROX5O5wdxfarx5jp7c-Ata1abDto-ZKsFIV-SCUByGENsaATu-C35qw14zqEY7e6F84eoQzLgY4g_P2GGEimNoF04CPf3ZZDufFmDA76HD499tj0BE8NoDWB4RO29b_m_UDaIV-Fw</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Kuijper, J.C.</creator><creator>Raepsaet, X.</creator><creator>de Haas, J.B.M.</creator><creator>von Lensa, W.</creator><creator>Ohlig, U.</creator><creator>Ruetten, H.-J.</creator><creator>Brockmann, H.</creator><creator>Damian, F.</creator><creator>Dolci, F.</creator><creator>Bernnat, W.</creator><creator>Oppe, J.</creator><creator>Kloosterman, J.L.</creator><creator>Cerullo, N.</creator><creator>Lomonaco, G.</creator><creator>Negrini, A.</creator><creator>Magill, J.</creator><creator>Seiler, R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20060301</creationdate><title>HTGR reactor physics and fuel cycle studies</title><author>Kuijper, J.C. ; Raepsaet, X. ; de Haas, J.B.M. ; von Lensa, W. ; Ohlig, U. ; Ruetten, H.-J. ; Brockmann, H. ; Damian, F. ; Dolci, F. ; Bernnat, W. ; Oppe, J. ; Kloosterman, J.L. ; Cerullo, N. ; Lomonaco, G. ; Negrini, A. ; Magill, J. ; Seiler, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-3de3724e33867d5d757bbb6b93f0eefa94b011ef54e7fca980cd752d0fc51d113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Applied sciences</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Nuclear fuels</topic><topic>Preparation and processing of nuclear fuels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuijper, J.C.</creatorcontrib><creatorcontrib>Raepsaet, X.</creatorcontrib><creatorcontrib>de Haas, J.B.M.</creatorcontrib><creatorcontrib>von Lensa, W.</creatorcontrib><creatorcontrib>Ohlig, U.</creatorcontrib><creatorcontrib>Ruetten, H.-J.</creatorcontrib><creatorcontrib>Brockmann, H.</creatorcontrib><creatorcontrib>Damian, F.</creatorcontrib><creatorcontrib>Dolci, F.</creatorcontrib><creatorcontrib>Bernnat, W.</creatorcontrib><creatorcontrib>Oppe, J.</creatorcontrib><creatorcontrib>Kloosterman, J.L.</creatorcontrib><creatorcontrib>Cerullo, N.</creatorcontrib><creatorcontrib>Lomonaco, G.</creatorcontrib><creatorcontrib>Negrini, A.</creatorcontrib><creatorcontrib>Magill, J.</creatorcontrib><creatorcontrib>Seiler, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nuclear engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuijper, J.C.</au><au>Raepsaet, X.</au><au>de Haas, J.B.M.</au><au>von Lensa, W.</au><au>Ohlig, U.</au><au>Ruetten, H.-J.</au><au>Brockmann, H.</au><au>Damian, F.</au><au>Dolci, F.</au><au>Bernnat, W.</au><au>Oppe, J.</au><au>Kloosterman, J.L.</au><au>Cerullo, N.</au><au>Lomonaco, G.</au><au>Negrini, A.</au><au>Magill, J.</au><au>Seiler, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HTGR reactor physics and fuel cycle studies</atitle><jtitle>Nuclear engineering and design</jtitle><date>2006-03-01</date><risdate>2006</risdate><volume>236</volume><issue>5</issue><spage>615</spage><epage>634</epage><pages>615-634</pages><issn>0029-5493</issn><eissn>1872-759X</eissn><coden>NEDEAU</coden><abstract>The high-temperature gas-cooled reactor (HTGR) appears as a good candidate for the next generation of nuclear power plants. In the “HTR-N” project of the European Union Fifth Framework Program, analyses have been performed on a number of conceptual HTGR designs, derived from reference pebble-bed and hexagonal block-type HTGR types. It is shown that several HTGR concepts are quite promising as systems for the incineration of plutonium and possibly minor actinides. These studies were mainly concerned with the investigation and intercomparison of the plutonium and actinide burning capabilities of a number of HTGR concepts and associated fuel cycles, with emphasis on the use of civil plutonium from spent LWR uranium fuel (first generation Pu) and from spent LWR MOX fuel (second generation Pu). Besides, the “HTR-N” project also included activities concerning the validation of computational tools and the qualification of models. Indeed, it is essential that validated analytical tools are available in the European nuclear community to perform conceptual design studies, industrial calculations (reload calculations and the associated core follow), safety analyses for licensing, etc., for new fuel cycles aiming at plutonium and minor actinide (MA) incineration/transmutation without multi-reprocessing of the discharged fuel. These validation and qualification activities have been centred round the two HTGR systems currently in operation, viz. the HTR-10 and the HTTR. The re-calculation of the HTTR first criticality with a Monte Carlo neutron transport code now yields acceptable correspondence with experimental data. Also calculations by 3D diffusion theory codes yield acceptable results. Special attention, however, has to be given to the modelling of neutron streaming effects. For the HTR-10 the analyses focused on first criticality, temperature coefficients and control rod worth. Also in these studies a good correspondence between calculation and experiment is observed for the 3D diffusion theory codes.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.nucengdes.2005.10.021</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5493
ispartof Nuclear engineering and design, 2006-03, Vol.236 (5), p.615-634
issn 0029-5493
1872-759X
language eng
recordid cdi_proquest_miscellaneous_29316954
source ScienceDirect Freedom Collection
subjects Applied sciences
Controled nuclear fusion plants
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fission nuclear power plants
Fuels
Installations for energy generation and conversion: thermal and electrical energy
Nuclear fuels
Preparation and processing of nuclear fuels
title HTGR reactor physics and fuel cycle studies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A25%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HTGR%20reactor%20physics%20and%20fuel%20cycle%20studies&rft.jtitle=Nuclear%20engineering%20and%20design&rft.au=Kuijper,%20J.C.&rft.date=2006-03-01&rft.volume=236&rft.issue=5&rft.spage=615&rft.epage=634&rft.pages=615-634&rft.issn=0029-5493&rft.eissn=1872-759X&rft.coden=NEDEAU&rft_id=info:doi/10.1016/j.nucengdes.2005.10.021&rft_dat=%3Cproquest_cross%3E29316954%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-3de3724e33867d5d757bbb6b93f0eefa94b011ef54e7fca980cd752d0fc51d113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29316954&rft_id=info:pmid/&rfr_iscdi=true