Loading…
Prediction of the Secondary Arms Spacing Based on Dendrite Tip Kinetics and Cooling Rate
Secondary dendrite arm spacing (SDAS) is one of the most important factors affecting macrosegregation and mechanical properties in solidification processes. Predicting SDAS is one of the major parameters in foundry technology. In order to predict the evolution of microstructures during the solidific...
Saved in:
Published in: | Materials 2024-02, Vol.17 (4), p.865 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c390t-2d803e2cabdfe06d437093e4aa9e398c38ecc631746d2b59a69f2e191d4d10593 |
---|---|
cites | cdi_FETCH-LOGICAL-c390t-2d803e2cabdfe06d437093e4aa9e398c38ecc631746d2b59a69f2e191d4d10593 |
container_end_page | |
container_issue | 4 |
container_start_page | 865 |
container_title | Materials |
container_volume | 17 |
creator | Sari, Ibrahim Ahmadein, Mahmoud Ataya, Sabbah Hachani, Lakhdar Zaidat, Kader Alrasheedi, Nashmi Wu, Menghuai Kharicha, Abdellah |
description | Secondary dendrite arm spacing (SDAS) is one of the most important factors affecting macrosegregation and mechanical properties in solidification processes. Predicting SDAS is one of the major parameters in foundry technology. In order to predict the evolution of microstructures during the solidification process, we proposed a simple model which predicted the secondary dendrite arm spacing based solely on the tip velocity (related to the tip supersaturation) and cooling rate. The model consisted of a growing cylinder inside a liquid cylindrical envelope. Two important hypotheses were made: (1) Initially the cylinder radius was assumed to equal the dendrite tip radius and (2) the cylindrical envelope had a fixed radius in the order of the dendrite tip diffusion length. The numerical model was tested against experiments using various Pb-Sn alloys for a fixed temperature gradient. The results were found to be in excellent agreement with experimental measurements in terms of SDAS and dendrite tip velocity prediction. This simple model is naturally destined to be implemented as a sub-grid model in volume-averaging models to predict the local microstructure, which in turn directly controls the mushy zone permeability and macrosegregation phenomena. |
doi_str_mv | 10.3390/ma17040865 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2932436368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A784102119</galeid><sourcerecordid>A784102119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-2d803e2cabdfe06d437093e4aa9e398c38ecc631746d2b59a69f2e191d4d10593</originalsourceid><addsrcrecordid>eNpdkU1rHDEMhk1paEKyl_6AYuilBDaxRl7P-LjdfJUGErIJ9DZ4bU3qMGNv7NlD_n28bNKWSgcJ8Ui86GXsM4gTRC1OBwO1kKJRsw_sALRWU9BSfvyn32eTnJ9ECURoKv2J7WODWgOoA_brNpHzdvQx8Njx8TfxJdkYnEkvfJ6GzJdrY3145N9NJscLdkbBJT8Sv_dr_tMHGr3N3ATHFzH2W_TOjHTE9jrTZ5q81UP2cHF-v7iaXt9c_ljMr6e2qB-nlWsEUmXNynUklJNYC40kjdGEurHYkLUKoZbKVauZNkp3FYEGJx2ImcZD9m13d53i84by2A4-W-p7EyhucltprCQqVE1Bv_6HPsVNCkXdlgKBgHVdqJMd9Wh6an3o4piMLelo8OUz1Pkyn9eNBFEBbBUc7xZsijkn6tp18kP5Xwui3XrU_vWowF_eNGxWA7k_6Lsj-ArBeIk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931031377</pqid></control><display><type>article</type><title>Prediction of the Secondary Arms Spacing Based on Dendrite Tip Kinetics and Cooling Rate</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Free Full-Text Journals in Chemistry</source><creator>Sari, Ibrahim ; Ahmadein, Mahmoud ; Ataya, Sabbah ; Hachani, Lakhdar ; Zaidat, Kader ; Alrasheedi, Nashmi ; Wu, Menghuai ; Kharicha, Abdellah</creator><creatorcontrib>Sari, Ibrahim ; Ahmadein, Mahmoud ; Ataya, Sabbah ; Hachani, Lakhdar ; Zaidat, Kader ; Alrasheedi, Nashmi ; Wu, Menghuai ; Kharicha, Abdellah</creatorcontrib><description>Secondary dendrite arm spacing (SDAS) is one of the most important factors affecting macrosegregation and mechanical properties in solidification processes. Predicting SDAS is one of the major parameters in foundry technology. In order to predict the evolution of microstructures during the solidification process, we proposed a simple model which predicted the secondary dendrite arm spacing based solely on the tip velocity (related to the tip supersaturation) and cooling rate. The model consisted of a growing cylinder inside a liquid cylindrical envelope. Two important hypotheses were made: (1) Initially the cylinder radius was assumed to equal the dendrite tip radius and (2) the cylindrical envelope had a fixed radius in the order of the dendrite tip diffusion length. The numerical model was tested against experiments using various Pb-Sn alloys for a fixed temperature gradient. The results were found to be in excellent agreement with experimental measurements in terms of SDAS and dendrite tip velocity prediction. This simple model is naturally destined to be implemented as a sub-grid model in volume-averaging models to predict the local microstructure, which in turn directly controls the mushy zone permeability and macrosegregation phenomena.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17040865</identifier><identifier>PMID: 38399116</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Agreements ; Alloys ; Continuous casting ; Cooling ; Cooling rate ; Cylinders ; Diffusion length ; Directional solidification ; Finite volume method ; Lead ; Mathematical models ; Mechanical properties ; Microstructure ; Mushy zones ; Numerical models ; Simulation ; Solidification ; Steel alloys ; Supersaturation ; Tin ; Tin base alloys ; Velocity</subject><ispartof>Materials, 2024-02, Vol.17 (4), p.865</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-2d803e2cabdfe06d437093e4aa9e398c38ecc631746d2b59a69f2e191d4d10593</citedby><cites>FETCH-LOGICAL-c390t-2d803e2cabdfe06d437093e4aa9e398c38ecc631746d2b59a69f2e191d4d10593</cites><orcidid>0000-0001-8636-2368 ; 0000-0003-4896-6835 ; 0000-0003-0321-412X ; 0000-0002-9229-1436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2931031377/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2931031377?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38399116$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sari, Ibrahim</creatorcontrib><creatorcontrib>Ahmadein, Mahmoud</creatorcontrib><creatorcontrib>Ataya, Sabbah</creatorcontrib><creatorcontrib>Hachani, Lakhdar</creatorcontrib><creatorcontrib>Zaidat, Kader</creatorcontrib><creatorcontrib>Alrasheedi, Nashmi</creatorcontrib><creatorcontrib>Wu, Menghuai</creatorcontrib><creatorcontrib>Kharicha, Abdellah</creatorcontrib><title>Prediction of the Secondary Arms Spacing Based on Dendrite Tip Kinetics and Cooling Rate</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Secondary dendrite arm spacing (SDAS) is one of the most important factors affecting macrosegregation and mechanical properties in solidification processes. Predicting SDAS is one of the major parameters in foundry technology. In order to predict the evolution of microstructures during the solidification process, we proposed a simple model which predicted the secondary dendrite arm spacing based solely on the tip velocity (related to the tip supersaturation) and cooling rate. The model consisted of a growing cylinder inside a liquid cylindrical envelope. Two important hypotheses were made: (1) Initially the cylinder radius was assumed to equal the dendrite tip radius and (2) the cylindrical envelope had a fixed radius in the order of the dendrite tip diffusion length. The numerical model was tested against experiments using various Pb-Sn alloys for a fixed temperature gradient. The results were found to be in excellent agreement with experimental measurements in terms of SDAS and dendrite tip velocity prediction. This simple model is naturally destined to be implemented as a sub-grid model in volume-averaging models to predict the local microstructure, which in turn directly controls the mushy zone permeability and macrosegregation phenomena.</description><subject>Agreements</subject><subject>Alloys</subject><subject>Continuous casting</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Cylinders</subject><subject>Diffusion length</subject><subject>Directional solidification</subject><subject>Finite volume method</subject><subject>Lead</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Mushy zones</subject><subject>Numerical models</subject><subject>Simulation</subject><subject>Solidification</subject><subject>Steel alloys</subject><subject>Supersaturation</subject><subject>Tin</subject><subject>Tin base alloys</subject><subject>Velocity</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkU1rHDEMhk1paEKyl_6AYuilBDaxRl7P-LjdfJUGErIJ9DZ4bU3qMGNv7NlD_n28bNKWSgcJ8Ui86GXsM4gTRC1OBwO1kKJRsw_sALRWU9BSfvyn32eTnJ9ECURoKv2J7WODWgOoA_brNpHzdvQx8Njx8TfxJdkYnEkvfJ6GzJdrY3145N9NJscLdkbBJT8Sv_dr_tMHGr3N3ATHFzH2W_TOjHTE9jrTZ5q81UP2cHF-v7iaXt9c_ljMr6e2qB-nlWsEUmXNynUklJNYC40kjdGEurHYkLUKoZbKVauZNkp3FYEGJx2ImcZD9m13d53i84by2A4-W-p7EyhucltprCQqVE1Bv_6HPsVNCkXdlgKBgHVdqJMd9Wh6an3o4piMLelo8OUz1Pkyn9eNBFEBbBUc7xZsijkn6tp18kP5Xwui3XrU_vWowF_eNGxWA7k_6Lsj-ArBeIk4</recordid><startdate>20240213</startdate><enddate>20240213</enddate><creator>Sari, Ibrahim</creator><creator>Ahmadein, Mahmoud</creator><creator>Ataya, Sabbah</creator><creator>Hachani, Lakhdar</creator><creator>Zaidat, Kader</creator><creator>Alrasheedi, Nashmi</creator><creator>Wu, Menghuai</creator><creator>Kharicha, Abdellah</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8636-2368</orcidid><orcidid>https://orcid.org/0000-0003-4896-6835</orcidid><orcidid>https://orcid.org/0000-0003-0321-412X</orcidid><orcidid>https://orcid.org/0000-0002-9229-1436</orcidid></search><sort><creationdate>20240213</creationdate><title>Prediction of the Secondary Arms Spacing Based on Dendrite Tip Kinetics and Cooling Rate</title><author>Sari, Ibrahim ; Ahmadein, Mahmoud ; Ataya, Sabbah ; Hachani, Lakhdar ; Zaidat, Kader ; Alrasheedi, Nashmi ; Wu, Menghuai ; Kharicha, Abdellah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-2d803e2cabdfe06d437093e4aa9e398c38ecc631746d2b59a69f2e191d4d10593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agreements</topic><topic>Alloys</topic><topic>Continuous casting</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Cylinders</topic><topic>Diffusion length</topic><topic>Directional solidification</topic><topic>Finite volume method</topic><topic>Lead</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Mushy zones</topic><topic>Numerical models</topic><topic>Simulation</topic><topic>Solidification</topic><topic>Steel alloys</topic><topic>Supersaturation</topic><topic>Tin</topic><topic>Tin base alloys</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sari, Ibrahim</creatorcontrib><creatorcontrib>Ahmadein, Mahmoud</creatorcontrib><creatorcontrib>Ataya, Sabbah</creatorcontrib><creatorcontrib>Hachani, Lakhdar</creatorcontrib><creatorcontrib>Zaidat, Kader</creatorcontrib><creatorcontrib>Alrasheedi, Nashmi</creatorcontrib><creatorcontrib>Wu, Menghuai</creatorcontrib><creatorcontrib>Kharicha, Abdellah</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sari, Ibrahim</au><au>Ahmadein, Mahmoud</au><au>Ataya, Sabbah</au><au>Hachani, Lakhdar</au><au>Zaidat, Kader</au><au>Alrasheedi, Nashmi</au><au>Wu, Menghuai</au><au>Kharicha, Abdellah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of the Secondary Arms Spacing Based on Dendrite Tip Kinetics and Cooling Rate</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-02-13</date><risdate>2024</risdate><volume>17</volume><issue>4</issue><spage>865</spage><pages>865-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Secondary dendrite arm spacing (SDAS) is one of the most important factors affecting macrosegregation and mechanical properties in solidification processes. Predicting SDAS is one of the major parameters in foundry technology. In order to predict the evolution of microstructures during the solidification process, we proposed a simple model which predicted the secondary dendrite arm spacing based solely on the tip velocity (related to the tip supersaturation) and cooling rate. The model consisted of a growing cylinder inside a liquid cylindrical envelope. Two important hypotheses were made: (1) Initially the cylinder radius was assumed to equal the dendrite tip radius and (2) the cylindrical envelope had a fixed radius in the order of the dendrite tip diffusion length. The numerical model was tested against experiments using various Pb-Sn alloys for a fixed temperature gradient. The results were found to be in excellent agreement with experimental measurements in terms of SDAS and dendrite tip velocity prediction. This simple model is naturally destined to be implemented as a sub-grid model in volume-averaging models to predict the local microstructure, which in turn directly controls the mushy zone permeability and macrosegregation phenomena.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38399116</pmid><doi>10.3390/ma17040865</doi><orcidid>https://orcid.org/0000-0001-8636-2368</orcidid><orcidid>https://orcid.org/0000-0003-4896-6835</orcidid><orcidid>https://orcid.org/0000-0003-0321-412X</orcidid><orcidid>https://orcid.org/0000-0002-9229-1436</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2024-02, Vol.17 (4), p.865 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_proquest_miscellaneous_2932436368 |
source | Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Free Full-Text Journals in Chemistry |
subjects | Agreements Alloys Continuous casting Cooling Cooling rate Cylinders Diffusion length Directional solidification Finite volume method Lead Mathematical models Mechanical properties Microstructure Mushy zones Numerical models Simulation Solidification Steel alloys Supersaturation Tin Tin base alloys Velocity |
title | Prediction of the Secondary Arms Spacing Based on Dendrite Tip Kinetics and Cooling Rate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20the%20Secondary%20Arms%20Spacing%20Based%20on%20Dendrite%20Tip%20Kinetics%20and%20Cooling%20Rate&rft.jtitle=Materials&rft.au=Sari,%20Ibrahim&rft.date=2024-02-13&rft.volume=17&rft.issue=4&rft.spage=865&rft.pages=865-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17040865&rft_dat=%3Cgale_proqu%3EA784102119%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-2d803e2cabdfe06d437093e4aa9e398c38ecc631746d2b59a69f2e191d4d10593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2931031377&rft_id=info:pmid/38399116&rft_galeid=A784102119&rfr_iscdi=true |