Loading…

Prediction of the Secondary Arms Spacing Based on Dendrite Tip Kinetics and Cooling Rate

Secondary dendrite arm spacing (SDAS) is one of the most important factors affecting macrosegregation and mechanical properties in solidification processes. Predicting SDAS is one of the major parameters in foundry technology. In order to predict the evolution of microstructures during the solidific...

Full description

Saved in:
Bibliographic Details
Published in:Materials 2024-02, Vol.17 (4), p.865
Main Authors: Sari, Ibrahim, Ahmadein, Mahmoud, Ataya, Sabbah, Hachani, Lakhdar, Zaidat, Kader, Alrasheedi, Nashmi, Wu, Menghuai, Kharicha, Abdellah
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c390t-2d803e2cabdfe06d437093e4aa9e398c38ecc631746d2b59a69f2e191d4d10593
cites cdi_FETCH-LOGICAL-c390t-2d803e2cabdfe06d437093e4aa9e398c38ecc631746d2b59a69f2e191d4d10593
container_end_page
container_issue 4
container_start_page 865
container_title Materials
container_volume 17
creator Sari, Ibrahim
Ahmadein, Mahmoud
Ataya, Sabbah
Hachani, Lakhdar
Zaidat, Kader
Alrasheedi, Nashmi
Wu, Menghuai
Kharicha, Abdellah
description Secondary dendrite arm spacing (SDAS) is one of the most important factors affecting macrosegregation and mechanical properties in solidification processes. Predicting SDAS is one of the major parameters in foundry technology. In order to predict the evolution of microstructures during the solidification process, we proposed a simple model which predicted the secondary dendrite arm spacing based solely on the tip velocity (related to the tip supersaturation) and cooling rate. The model consisted of a growing cylinder inside a liquid cylindrical envelope. Two important hypotheses were made: (1) Initially the cylinder radius was assumed to equal the dendrite tip radius and (2) the cylindrical envelope had a fixed radius in the order of the dendrite tip diffusion length. The numerical model was tested against experiments using various Pb-Sn alloys for a fixed temperature gradient. The results were found to be in excellent agreement with experimental measurements in terms of SDAS and dendrite tip velocity prediction. This simple model is naturally destined to be implemented as a sub-grid model in volume-averaging models to predict the local microstructure, which in turn directly controls the mushy zone permeability and macrosegregation phenomena.
doi_str_mv 10.3390/ma17040865
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_2932436368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A784102119</galeid><sourcerecordid>A784102119</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-2d803e2cabdfe06d437093e4aa9e398c38ecc631746d2b59a69f2e191d4d10593</originalsourceid><addsrcrecordid>eNpdkU1rHDEMhk1paEKyl_6AYuilBDaxRl7P-LjdfJUGErIJ9DZ4bU3qMGNv7NlD_n28bNKWSgcJ8Ui86GXsM4gTRC1OBwO1kKJRsw_sALRWU9BSfvyn32eTnJ9ECURoKv2J7WODWgOoA_brNpHzdvQx8Njx8TfxJdkYnEkvfJ6GzJdrY3145N9NJscLdkbBJT8Sv_dr_tMHGr3N3ATHFzH2W_TOjHTE9jrTZ5q81UP2cHF-v7iaXt9c_ljMr6e2qB-nlWsEUmXNynUklJNYC40kjdGEurHYkLUKoZbKVauZNkp3FYEGJx2ImcZD9m13d53i84by2A4-W-p7EyhucltprCQqVE1Bv_6HPsVNCkXdlgKBgHVdqJMd9Wh6an3o4piMLelo8OUz1Pkyn9eNBFEBbBUc7xZsijkn6tp18kP5Xwui3XrU_vWowF_eNGxWA7k_6Lsj-ArBeIk4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931031377</pqid></control><display><type>article</type><title>Prediction of the Secondary Arms Spacing Based on Dendrite Tip Kinetics and Cooling Rate</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Free Full-Text Journals in Chemistry</source><creator>Sari, Ibrahim ; Ahmadein, Mahmoud ; Ataya, Sabbah ; Hachani, Lakhdar ; Zaidat, Kader ; Alrasheedi, Nashmi ; Wu, Menghuai ; Kharicha, Abdellah</creator><creatorcontrib>Sari, Ibrahim ; Ahmadein, Mahmoud ; Ataya, Sabbah ; Hachani, Lakhdar ; Zaidat, Kader ; Alrasheedi, Nashmi ; Wu, Menghuai ; Kharicha, Abdellah</creatorcontrib><description>Secondary dendrite arm spacing (SDAS) is one of the most important factors affecting macrosegregation and mechanical properties in solidification processes. Predicting SDAS is one of the major parameters in foundry technology. In order to predict the evolution of microstructures during the solidification process, we proposed a simple model which predicted the secondary dendrite arm spacing based solely on the tip velocity (related to the tip supersaturation) and cooling rate. The model consisted of a growing cylinder inside a liquid cylindrical envelope. Two important hypotheses were made: (1) Initially the cylinder radius was assumed to equal the dendrite tip radius and (2) the cylindrical envelope had a fixed radius in the order of the dendrite tip diffusion length. The numerical model was tested against experiments using various Pb-Sn alloys for a fixed temperature gradient. The results were found to be in excellent agreement with experimental measurements in terms of SDAS and dendrite tip velocity prediction. This simple model is naturally destined to be implemented as a sub-grid model in volume-averaging models to predict the local microstructure, which in turn directly controls the mushy zone permeability and macrosegregation phenomena.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma17040865</identifier><identifier>PMID: 38399116</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Agreements ; Alloys ; Continuous casting ; Cooling ; Cooling rate ; Cylinders ; Diffusion length ; Directional solidification ; Finite volume method ; Lead ; Mathematical models ; Mechanical properties ; Microstructure ; Mushy zones ; Numerical models ; Simulation ; Solidification ; Steel alloys ; Supersaturation ; Tin ; Tin base alloys ; Velocity</subject><ispartof>Materials, 2024-02, Vol.17 (4), p.865</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-2d803e2cabdfe06d437093e4aa9e398c38ecc631746d2b59a69f2e191d4d10593</citedby><cites>FETCH-LOGICAL-c390t-2d803e2cabdfe06d437093e4aa9e398c38ecc631746d2b59a69f2e191d4d10593</cites><orcidid>0000-0001-8636-2368 ; 0000-0003-4896-6835 ; 0000-0003-0321-412X ; 0000-0002-9229-1436</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2931031377/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2931031377?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38399116$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sari, Ibrahim</creatorcontrib><creatorcontrib>Ahmadein, Mahmoud</creatorcontrib><creatorcontrib>Ataya, Sabbah</creatorcontrib><creatorcontrib>Hachani, Lakhdar</creatorcontrib><creatorcontrib>Zaidat, Kader</creatorcontrib><creatorcontrib>Alrasheedi, Nashmi</creatorcontrib><creatorcontrib>Wu, Menghuai</creatorcontrib><creatorcontrib>Kharicha, Abdellah</creatorcontrib><title>Prediction of the Secondary Arms Spacing Based on Dendrite Tip Kinetics and Cooling Rate</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>Secondary dendrite arm spacing (SDAS) is one of the most important factors affecting macrosegregation and mechanical properties in solidification processes. Predicting SDAS is one of the major parameters in foundry technology. In order to predict the evolution of microstructures during the solidification process, we proposed a simple model which predicted the secondary dendrite arm spacing based solely on the tip velocity (related to the tip supersaturation) and cooling rate. The model consisted of a growing cylinder inside a liquid cylindrical envelope. Two important hypotheses were made: (1) Initially the cylinder radius was assumed to equal the dendrite tip radius and (2) the cylindrical envelope had a fixed radius in the order of the dendrite tip diffusion length. The numerical model was tested against experiments using various Pb-Sn alloys for a fixed temperature gradient. The results were found to be in excellent agreement with experimental measurements in terms of SDAS and dendrite tip velocity prediction. This simple model is naturally destined to be implemented as a sub-grid model in volume-averaging models to predict the local microstructure, which in turn directly controls the mushy zone permeability and macrosegregation phenomena.</description><subject>Agreements</subject><subject>Alloys</subject><subject>Continuous casting</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Cylinders</subject><subject>Diffusion length</subject><subject>Directional solidification</subject><subject>Finite volume method</subject><subject>Lead</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Mushy zones</subject><subject>Numerical models</subject><subject>Simulation</subject><subject>Solidification</subject><subject>Steel alloys</subject><subject>Supersaturation</subject><subject>Tin</subject><subject>Tin base alloys</subject><subject>Velocity</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkU1rHDEMhk1paEKyl_6AYuilBDaxRl7P-LjdfJUGErIJ9DZ4bU3qMGNv7NlD_n28bNKWSgcJ8Ui86GXsM4gTRC1OBwO1kKJRsw_sALRWU9BSfvyn32eTnJ9ECURoKv2J7WODWgOoA_brNpHzdvQx8Njx8TfxJdkYnEkvfJ6GzJdrY3145N9NJscLdkbBJT8Sv_dr_tMHGr3N3ATHFzH2W_TOjHTE9jrTZ5q81UP2cHF-v7iaXt9c_ljMr6e2qB-nlWsEUmXNynUklJNYC40kjdGEurHYkLUKoZbKVauZNkp3FYEGJx2ImcZD9m13d53i84by2A4-W-p7EyhucltprCQqVE1Bv_6HPsVNCkXdlgKBgHVdqJMd9Wh6an3o4piMLelo8OUz1Pkyn9eNBFEBbBUc7xZsijkn6tp18kP5Xwui3XrU_vWowF_eNGxWA7k_6Lsj-ArBeIk4</recordid><startdate>20240213</startdate><enddate>20240213</enddate><creator>Sari, Ibrahim</creator><creator>Ahmadein, Mahmoud</creator><creator>Ataya, Sabbah</creator><creator>Hachani, Lakhdar</creator><creator>Zaidat, Kader</creator><creator>Alrasheedi, Nashmi</creator><creator>Wu, Menghuai</creator><creator>Kharicha, Abdellah</creator><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8636-2368</orcidid><orcidid>https://orcid.org/0000-0003-4896-6835</orcidid><orcidid>https://orcid.org/0000-0003-0321-412X</orcidid><orcidid>https://orcid.org/0000-0002-9229-1436</orcidid></search><sort><creationdate>20240213</creationdate><title>Prediction of the Secondary Arms Spacing Based on Dendrite Tip Kinetics and Cooling Rate</title><author>Sari, Ibrahim ; Ahmadein, Mahmoud ; Ataya, Sabbah ; Hachani, Lakhdar ; Zaidat, Kader ; Alrasheedi, Nashmi ; Wu, Menghuai ; Kharicha, Abdellah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-2d803e2cabdfe06d437093e4aa9e398c38ecc631746d2b59a69f2e191d4d10593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Agreements</topic><topic>Alloys</topic><topic>Continuous casting</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Cylinders</topic><topic>Diffusion length</topic><topic>Directional solidification</topic><topic>Finite volume method</topic><topic>Lead</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Mushy zones</topic><topic>Numerical models</topic><topic>Simulation</topic><topic>Solidification</topic><topic>Steel alloys</topic><topic>Supersaturation</topic><topic>Tin</topic><topic>Tin base alloys</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sari, Ibrahim</creatorcontrib><creatorcontrib>Ahmadein, Mahmoud</creatorcontrib><creatorcontrib>Ataya, Sabbah</creatorcontrib><creatorcontrib>Hachani, Lakhdar</creatorcontrib><creatorcontrib>Zaidat, Kader</creatorcontrib><creatorcontrib>Alrasheedi, Nashmi</creatorcontrib><creatorcontrib>Wu, Menghuai</creatorcontrib><creatorcontrib>Kharicha, Abdellah</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sari, Ibrahim</au><au>Ahmadein, Mahmoud</au><au>Ataya, Sabbah</au><au>Hachani, Lakhdar</au><au>Zaidat, Kader</au><au>Alrasheedi, Nashmi</au><au>Wu, Menghuai</au><au>Kharicha, Abdellah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of the Secondary Arms Spacing Based on Dendrite Tip Kinetics and Cooling Rate</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2024-02-13</date><risdate>2024</risdate><volume>17</volume><issue>4</issue><spage>865</spage><pages>865-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Secondary dendrite arm spacing (SDAS) is one of the most important factors affecting macrosegregation and mechanical properties in solidification processes. Predicting SDAS is one of the major parameters in foundry technology. In order to predict the evolution of microstructures during the solidification process, we proposed a simple model which predicted the secondary dendrite arm spacing based solely on the tip velocity (related to the tip supersaturation) and cooling rate. The model consisted of a growing cylinder inside a liquid cylindrical envelope. Two important hypotheses were made: (1) Initially the cylinder radius was assumed to equal the dendrite tip radius and (2) the cylindrical envelope had a fixed radius in the order of the dendrite tip diffusion length. The numerical model was tested against experiments using various Pb-Sn alloys for a fixed temperature gradient. The results were found to be in excellent agreement with experimental measurements in terms of SDAS and dendrite tip velocity prediction. This simple model is naturally destined to be implemented as a sub-grid model in volume-averaging models to predict the local microstructure, which in turn directly controls the mushy zone permeability and macrosegregation phenomena.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38399116</pmid><doi>10.3390/ma17040865</doi><orcidid>https://orcid.org/0000-0001-8636-2368</orcidid><orcidid>https://orcid.org/0000-0003-4896-6835</orcidid><orcidid>https://orcid.org/0000-0003-0321-412X</orcidid><orcidid>https://orcid.org/0000-0002-9229-1436</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2024-02, Vol.17 (4), p.865
issn 1996-1944
1996-1944
language eng
recordid cdi_proquest_miscellaneous_2932436368
source Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Free Full-Text Journals in Chemistry
subjects Agreements
Alloys
Continuous casting
Cooling
Cooling rate
Cylinders
Diffusion length
Directional solidification
Finite volume method
Lead
Mathematical models
Mechanical properties
Microstructure
Mushy zones
Numerical models
Simulation
Solidification
Steel alloys
Supersaturation
Tin
Tin base alloys
Velocity
title Prediction of the Secondary Arms Spacing Based on Dendrite Tip Kinetics and Cooling Rate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20the%20Secondary%20Arms%20Spacing%20Based%20on%20Dendrite%20Tip%20Kinetics%20and%20Cooling%20Rate&rft.jtitle=Materials&rft.au=Sari,%20Ibrahim&rft.date=2024-02-13&rft.volume=17&rft.issue=4&rft.spage=865&rft.pages=865-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma17040865&rft_dat=%3Cgale_proqu%3EA784102119%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-2d803e2cabdfe06d437093e4aa9e398c38ecc631746d2b59a69f2e191d4d10593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2931031377&rft_id=info:pmid/38399116&rft_galeid=A784102119&rfr_iscdi=true