Loading…
New Scalable Sulfur Cathode Containing Specifically Designed Polysulfide Adsorbing Materials
Because of its considerable theoretical specific capacity and energy density, lithium-sulfur battery technology holds great potential to replace lithium-ion battery technology. However, a versatile, low-cost, and easily scalable bulk synthesis method is essential for translating bench-level developm...
Saved in:
Published in: | Materials 2024-02, Vol.17 (4), p.856 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Because of its considerable theoretical specific capacity and energy density, lithium-sulfur battery technology holds great potential to replace lithium-ion battery technology. However, a versatile, low-cost, and easily scalable bulk synthesis method is essential for translating bench-level development to large-scale production. This paper reports the design and synthesis of a new scalable sulfur cathode, S@CNT/PANI/PPyNT/TiO
(BTX). The rationally chosen cathode components suppress the migration of polysulfide intermediates via chemical interactions, enhance redox kinetics, and provide electrical conductivity to sulfur, rendering outstanding long-term cycling performance and strong initial specific capacity in terms of electrochemical performance. This cathode's cell demonstrated an initial specific capacity of 740 mA h g
at 0.2 C (with a capacity decay rate of 0.08% per cycle after 450 cycles). |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma17040856 |