Loading…
Effect of Coffee Grounds/Coffee Ground Biochar on Cement Hydration and Adsorption Properties
Taking advantage of the strong adsorption characteristics of coffee grounds (CGs) and coffee ground biochar (CGB), this research employed equal amounts of 2%, 4%, 6%, and 8% CGs and CGB to replace cement. This study thereby examined the impacts of CGs and CGB on cement compressive strength, as well...
Saved in:
Published in: | Materials 2024-02, Vol.17 (4), p.907 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Taking advantage of the strong adsorption characteristics of coffee grounds (CGs) and coffee ground biochar (CGB), this research employed equal amounts of 2%, 4%, 6%, and 8% CGs and CGB to replace cement. This study thereby examined the impacts of CGs and CGB on cement compressive strength, as well as their abilities to adsorb chloride ions and formaldehyde. X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG-DTG), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were employed to investigate the hydration mechanism and characterize the microscopic structure. The results show the following: (1) The presence of a substantial quantity of organic compounds in CGs is found to have an adverse effect on both the compressive strength and hydration degree of the sample. The use of CGB after high-temperature pyrolysis of phosphoric acid can effectively improve the negative impact of organic compounds on the sample. (2) The addition of CGs reduces the adsorption of chloride ions by cement, primarily due to the presence of fewer hydration products. However, when CGB was incorporated into cement, it enhanced the ability to adsorb chloride ions. (3) Cement containing 8% CGB content can slightly enhance the adsorption of formaldehyde. However, the cement sample with 8% CGB content exhibited the most significant ability to adsorb formaldehyde. |
---|---|
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma17040907 |