Loading…

Aluminium carbide formation in interpenetrating graphite/aluminium composites

We have produced interpenetrating graphite/aluminium composites by gas pressure infiltration of aluminium alloys with varying silicon content into porous graphite preforms. Infiltration experiments at 750 °C have shown that a silicon content of up to 18 wt.% can reduce the formation of aluminium car...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2007-03, Vol.448 (1), p.1-6
Main Authors: Etter, T., Schulz, P., Weber, M., Metz, J., Wimmler, M., Löffler, J.F., Uggowitzer, P.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c398t-f5adf9988bd92085889ef35be0506a0209ff44ed82f81715e50b8ac6413b8cfc3
cites cdi_FETCH-LOGICAL-c398t-f5adf9988bd92085889ef35be0506a0209ff44ed82f81715e50b8ac6413b8cfc3
container_end_page 6
container_issue 1
container_start_page 1
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 448
creator Etter, T.
Schulz, P.
Weber, M.
Metz, J.
Wimmler, M.
Löffler, J.F.
Uggowitzer, P.J.
description We have produced interpenetrating graphite/aluminium composites by gas pressure infiltration of aluminium alloys with varying silicon content into porous graphite preforms. Infiltration experiments at 750 °C have shown that a silicon content of up to 18 wt.% can reduce the formation of aluminium carbide but cannot completely deter it. Optical and scanning electron microscopy revealed numerous lath-like interfacial aluminium carbide crystals in the μm regime which, however, did not affect the flexural strength of our composites. Severe aluminium carbide degradation was observed within a few days on composites exposed to ambient conditions. Carbide-free composites were produced by reducing the infiltration temperature to 670 °C for the eutectic alloy.
doi_str_mv 10.1016/j.msea.2006.11.088
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29336190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509306024993</els_id><sourcerecordid>29336190</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-f5adf9988bd92085889ef35be0506a0209ff44ed82f81715e50b8ac6413b8cfc3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AU-96K3dSdN0E_CyLP6DFS96Dmk6WbO0TU1awW9vl13YmzAw8Pi9N8wj5JZCRoGWi13WRtRZDlBmlGYgxBmZUbFkaSFZeU5mIHOacpDsklzFuAMAWgCfkbdVM7auc2ObGB0qV2NifWj14HyXuP0MGHrscAiT1m2TbdD9lxtwoU9G3_Y-Tlq8JhdWNxFvjntOPp8eP9Yv6eb9-XW92qSGSTGkluvaSilEVcscBBdComW8QuBQashBWlsUWIvcCrqkHDlUQpuyoKwSxho2J_eH3D747xHjoFoXDTaN7tCPUeWSsZJKmMD8AJrgYwxoVR9cq8OvoqD2zamd2jen9s0pStXU3GS6O6braHRjg-6Miyen4KzIpZy4hwOH06s_DoOKxmFnsHYBzaBq7_478wdzp4Xl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29336190</pqid></control><display><type>article</type><title>Aluminium carbide formation in interpenetrating graphite/aluminium composites</title><source>ScienceDirect Journals</source><creator>Etter, T. ; Schulz, P. ; Weber, M. ; Metz, J. ; Wimmler, M. ; Löffler, J.F. ; Uggowitzer, P.J.</creator><creatorcontrib>Etter, T. ; Schulz, P. ; Weber, M. ; Metz, J. ; Wimmler, M. ; Löffler, J.F. ; Uggowitzer, P.J.</creatorcontrib><description>We have produced interpenetrating graphite/aluminium composites by gas pressure infiltration of aluminium alloys with varying silicon content into porous graphite preforms. Infiltration experiments at 750 °C have shown that a silicon content of up to 18 wt.% can reduce the formation of aluminium carbide but cannot completely deter it. Optical and scanning electron microscopy revealed numerous lath-like interfacial aluminium carbide crystals in the μm regime which, however, did not affect the flexural strength of our composites. Severe aluminium carbide degradation was observed within a few days on composites exposed to ambient conditions. Carbide-free composites were produced by reducing the infiltration temperature to 670 °C for the eutectic alloy.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2006.11.088</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aluminium carbide ; Applied sciences ; Elasticity. Plasticity ; Exact sciences and technology ; Gas pressure infiltration ; Graphite ; Interpenetrating phase composites ; Liquid metal infiltration ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Powder metallurgy. Composite materials ; Production techniques ; X-ray diffraction</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2007-03, Vol.448 (1), p.1-6</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-f5adf9988bd92085889ef35be0506a0209ff44ed82f81715e50b8ac6413b8cfc3</citedby><cites>FETCH-LOGICAL-c398t-f5adf9988bd92085889ef35be0506a0209ff44ed82f81715e50b8ac6413b8cfc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18534299$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Etter, T.</creatorcontrib><creatorcontrib>Schulz, P.</creatorcontrib><creatorcontrib>Weber, M.</creatorcontrib><creatorcontrib>Metz, J.</creatorcontrib><creatorcontrib>Wimmler, M.</creatorcontrib><creatorcontrib>Löffler, J.F.</creatorcontrib><creatorcontrib>Uggowitzer, P.J.</creatorcontrib><title>Aluminium carbide formation in interpenetrating graphite/aluminium composites</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>We have produced interpenetrating graphite/aluminium composites by gas pressure infiltration of aluminium alloys with varying silicon content into porous graphite preforms. Infiltration experiments at 750 °C have shown that a silicon content of up to 18 wt.% can reduce the formation of aluminium carbide but cannot completely deter it. Optical and scanning electron microscopy revealed numerous lath-like interfacial aluminium carbide crystals in the μm regime which, however, did not affect the flexural strength of our composites. Severe aluminium carbide degradation was observed within a few days on composites exposed to ambient conditions. Carbide-free composites were produced by reducing the infiltration temperature to 670 °C for the eutectic alloy.</description><subject>Aluminium carbide</subject><subject>Applied sciences</subject><subject>Elasticity. Plasticity</subject><subject>Exact sciences and technology</subject><subject>Gas pressure infiltration</subject><subject>Graphite</subject><subject>Interpenetrating phase composites</subject><subject>Liquid metal infiltration</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Powder metallurgy. Composite materials</subject><subject>Production techniques</subject><subject>X-ray diffraction</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AU-96K3dSdN0E_CyLP6DFS96Dmk6WbO0TU1awW9vl13YmzAw8Pi9N8wj5JZCRoGWi13WRtRZDlBmlGYgxBmZUbFkaSFZeU5mIHOacpDsklzFuAMAWgCfkbdVM7auc2ObGB0qV2NifWj14HyXuP0MGHrscAiT1m2TbdD9lxtwoU9G3_Y-Tlq8JhdWNxFvjntOPp8eP9Yv6eb9-XW92qSGSTGkluvaSilEVcscBBdComW8QuBQashBWlsUWIvcCrqkHDlUQpuyoKwSxho2J_eH3D747xHjoFoXDTaN7tCPUeWSsZJKmMD8AJrgYwxoVR9cq8OvoqD2zamd2jen9s0pStXU3GS6O6braHRjg-6Miyen4KzIpZy4hwOH06s_DoOKxmFnsHYBzaBq7_478wdzp4Xl</recordid><startdate>20070315</startdate><enddate>20070315</enddate><creator>Etter, T.</creator><creator>Schulz, P.</creator><creator>Weber, M.</creator><creator>Metz, J.</creator><creator>Wimmler, M.</creator><creator>Löffler, J.F.</creator><creator>Uggowitzer, P.J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20070315</creationdate><title>Aluminium carbide formation in interpenetrating graphite/aluminium composites</title><author>Etter, T. ; Schulz, P. ; Weber, M. ; Metz, J. ; Wimmler, M. ; Löffler, J.F. ; Uggowitzer, P.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-f5adf9988bd92085889ef35be0506a0209ff44ed82f81715e50b8ac6413b8cfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aluminium carbide</topic><topic>Applied sciences</topic><topic>Elasticity. Plasticity</topic><topic>Exact sciences and technology</topic><topic>Gas pressure infiltration</topic><topic>Graphite</topic><topic>Interpenetrating phase composites</topic><topic>Liquid metal infiltration</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Powder metallurgy. Composite materials</topic><topic>Production techniques</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Etter, T.</creatorcontrib><creatorcontrib>Schulz, P.</creatorcontrib><creatorcontrib>Weber, M.</creatorcontrib><creatorcontrib>Metz, J.</creatorcontrib><creatorcontrib>Wimmler, M.</creatorcontrib><creatorcontrib>Löffler, J.F.</creatorcontrib><creatorcontrib>Uggowitzer, P.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Etter, T.</au><au>Schulz, P.</au><au>Weber, M.</au><au>Metz, J.</au><au>Wimmler, M.</au><au>Löffler, J.F.</au><au>Uggowitzer, P.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aluminium carbide formation in interpenetrating graphite/aluminium composites</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2007-03-15</date><risdate>2007</risdate><volume>448</volume><issue>1</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>We have produced interpenetrating graphite/aluminium composites by gas pressure infiltration of aluminium alloys with varying silicon content into porous graphite preforms. Infiltration experiments at 750 °C have shown that a silicon content of up to 18 wt.% can reduce the formation of aluminium carbide but cannot completely deter it. Optical and scanning electron microscopy revealed numerous lath-like interfacial aluminium carbide crystals in the μm regime which, however, did not affect the flexural strength of our composites. Severe aluminium carbide degradation was observed within a few days on composites exposed to ambient conditions. Carbide-free composites were produced by reducing the infiltration temperature to 670 °C for the eutectic alloy.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2006.11.088</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2007-03, Vol.448 (1), p.1-6
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_29336190
source ScienceDirect Journals
subjects Aluminium carbide
Applied sciences
Elasticity. Plasticity
Exact sciences and technology
Gas pressure infiltration
Graphite
Interpenetrating phase composites
Liquid metal infiltration
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Powder metallurgy. Composite materials
Production techniques
X-ray diffraction
title Aluminium carbide formation in interpenetrating graphite/aluminium composites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A09%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aluminium%20carbide%20formation%20in%20interpenetrating%20graphite/aluminium%20composites&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Etter,%20T.&rft.date=2007-03-15&rft.volume=448&rft.issue=1&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2006.11.088&rft_dat=%3Cproquest_cross%3E29336190%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-f5adf9988bd92085889ef35be0506a0209ff44ed82f81715e50b8ac6413b8cfc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29336190&rft_id=info:pmid/&rfr_iscdi=true