Loading…
Unusual Sesquiterpenes from Streptomyces olindensis DAUFPE 5622
In nature, the vast majority of sesquiterpenes are produced by type I mechanisms, and glycosylated sesquiterpenes are rare in actinobacteria. Streptomyces olindensis DAUFPE 5622 produces the sesquiterpenes olindenones A–G, a new class of rearranged drimane sesquiterpenes. Olindenones B–D are oxygena...
Saved in:
Published in: | Journal of natural products (Washington, D.C.) D.C.), 2024-03, Vol.87 (3), p.491-500 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In nature, the vast majority of sesquiterpenes are produced by type I mechanisms, and glycosylated sesquiterpenes are rare in actinobacteria. Streptomyces olindensis DAUFPE 5622 produces the sesquiterpenes olindenones A–G, a new class of rearranged drimane sesquiterpenes. Olindenones B–D are oxygenated derivatives of olindenone A, while olindenones E–G are analogs glycosylated with dideoxysugars. 13C-isotope labeling studies demonstrated olindenone A biosynthesis occurs via the methylerythritol phosphate (MEP) pathway and suggested the rearrangement is only partially concerted. Based on the structures, one potential mechanism of olindenone A formation proceeds by cyclization of the linear terpenoid precursor, likely occurring via a terpene cyclase-mediated type II mechanism whereby the terminal alkene of the precursor is protonated, triggering carbocation-driven cyclization followed by rearrangement. Diphosphate hydrolysis may occur either before or after cyclization. Although a biosynthetic route is proposed, the terpene cyclase gene responsible for producing olindenones currently remains unidentified. |
---|---|
ISSN: | 0163-3864 1520-6025 1520-6025 |
DOI: | 10.1021/acs.jnatprod.3c00752 |