Loading…
Back to the future for drought tolerance
Summary Global agriculture faces increasing pressure to produce more food with fewer resources. Drought, exacerbated by climate change, is a major agricultural constraint costing the industry an estimated US$80 billion per year in lost production. Wild relatives of domesticated crops, including whea...
Saved in:
Published in: | The New phytologist 2024-04, Vol.242 (2), p.372-383 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c3489-4467d9680e9fb42d159e0eec38f4c43554c1720f8c88b52322cb234c314110263 |
container_end_page | 383 |
container_issue | 2 |
container_start_page | 372 |
container_title | The New phytologist |
container_volume | 242 |
creator | Guadarrama‐Escobar, Luis M. Hunt, James Gurung, Allison Zarco‐Tejada, Pablo J. Shabala, Sergey Camino, Carlos Hernandez, Pilar Pourkheirandish, Mohammad |
description | Summary
Global agriculture faces increasing pressure to produce more food with fewer resources. Drought, exacerbated by climate change, is a major agricultural constraint costing the industry an estimated US$80 billion per year in lost production. Wild relatives of domesticated crops, including wheat (Triticum spp.) and barley (Hordeum vulgare L.), are an underutilized source of drought tolerance genes. However, managing their undesirable characteristics, assessing drought responses, and selecting lines with heritable traits remains a significant challenge. Here, we propose a novel strategy of using multi‐trait selection criteria based on high‐throughput spectral images to facilitate the assessment and selection challenge. The importance of measuring plant capacity for sustained carbon fixation under drought stress is explored, and an image‐based transpiration efficiency (iTE) index obtained via a combination of hyperspectral and thermal imaging, is proposed. Incorporating iTE along with other drought‐related variables in selection criteria will allow the identification of accessions with diverse tolerance mechanisms. A comprehensive approach that merges high‐throughput phenotyping and de novo domestication is proposed for developing drought‐tolerant prebreeding material and providing breeders with access to gene pools containing unexplored drought tolerance mechanisms. |
doi_str_mv | 10.1111/nph.19619 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2934276563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2969142389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3489-4467d9680e9fb42d159e0eec38f4c43554c1720f8c88b52322cb234c314110263</originalsourceid><addsrcrecordid>eNp10D1PwzAQBmALgWgpDPwBFImlDGn9cXHsESqgSBUwgMRmJY5DWtK42IlQ_z2GFAYkbrnhHr06vQidEjwhYabNppoQyYncQ0MCXMaCsHQfDTGmIubAXwboyPsVxlgmnB6iARNApRB0iMZXmX6LWhu1lYnKru1cWNZFhbPda9WGS21c1mhzjA7KrPbmZLdH6Pnm-mk2jxcPt3ezy0WsGQgZA_C0kFxgI8scaEESabAxmokSNLAkAU1SikuhhcgTyijVOWWgGQFCMOVshMZ97sbZ9874Vq2XXpu6zhpjO6-oZEBTnnAW6PkfurKda8J3QXFJgDIhg7rolXbWe2dKtXHLdea2imD1VZ8K9anv-oI92yV2-doUv_KnrwCmPfhY1mb7f5K6f5z3kZ_jc3XJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969142389</pqid></control><display><type>article</type><title>Back to the future for drought tolerance</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Guadarrama‐Escobar, Luis M. ; Hunt, James ; Gurung, Allison ; Zarco‐Tejada, Pablo J. ; Shabala, Sergey ; Camino, Carlos ; Hernandez, Pilar ; Pourkheirandish, Mohammad</creator><creatorcontrib>Guadarrama‐Escobar, Luis M. ; Hunt, James ; Gurung, Allison ; Zarco‐Tejada, Pablo J. ; Shabala, Sergey ; Camino, Carlos ; Hernandez, Pilar ; Pourkheirandish, Mohammad</creatorcontrib><description>Summary
Global agriculture faces increasing pressure to produce more food with fewer resources. Drought, exacerbated by climate change, is a major agricultural constraint costing the industry an estimated US$80 billion per year in lost production. Wild relatives of domesticated crops, including wheat (Triticum spp.) and barley (Hordeum vulgare L.), are an underutilized source of drought tolerance genes. However, managing their undesirable characteristics, assessing drought responses, and selecting lines with heritable traits remains a significant challenge. Here, we propose a novel strategy of using multi‐trait selection criteria based on high‐throughput spectral images to facilitate the assessment and selection challenge. The importance of measuring plant capacity for sustained carbon fixation under drought stress is explored, and an image‐based transpiration efficiency (iTE) index obtained via a combination of hyperspectral and thermal imaging, is proposed. Incorporating iTE along with other drought‐related variables in selection criteria will allow the identification of accessions with diverse tolerance mechanisms. A comprehensive approach that merges high‐throughput phenotyping and de novo domestication is proposed for developing drought‐tolerant prebreeding material and providing breeders with access to gene pools containing unexplored drought tolerance mechanisms.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.19619</identifier><identifier>PMID: 38429882</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Carbon fixation ; Cereal crops ; Climate change ; Criteria ; Crops, Agricultural - genetics ; de novo domestication ; Domestication ; Drought ; Drought Resistance ; Droughts ; Gene pools ; high‐throughput imaging ; Hordeum vulgare ; Phenotype ; Phenotyping ; stomata ; Thermal imaging ; Transpiration ; transpiration efficiency ; Triticum ; water use efficiency ; wild relatives</subject><ispartof>The New phytologist, 2024-04, Vol.242 (2), p.372-383</ispartof><rights>2024 The Authors © 2024 New Phytologist Foundation</rights><rights>2024 The Authors New Phytologist © 2024 New Phytologist Foundation.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3489-4467d9680e9fb42d159e0eec38f4c43554c1720f8c88b52322cb234c314110263</cites><orcidid>0000-0003-2345-8981 ; 0000-0003-4337-3600 ; 0000-0001-5166-4454 ; 0000-0001-5857-5366 ; 0000-0003-1433-6165 ; 0000-0003-2884-5622 ; 0000-0001-5188-4406 ; 0009-0009-5983-0010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38429882$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guadarrama‐Escobar, Luis M.</creatorcontrib><creatorcontrib>Hunt, James</creatorcontrib><creatorcontrib>Gurung, Allison</creatorcontrib><creatorcontrib>Zarco‐Tejada, Pablo J.</creatorcontrib><creatorcontrib>Shabala, Sergey</creatorcontrib><creatorcontrib>Camino, Carlos</creatorcontrib><creatorcontrib>Hernandez, Pilar</creatorcontrib><creatorcontrib>Pourkheirandish, Mohammad</creatorcontrib><title>Back to the future for drought tolerance</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary
Global agriculture faces increasing pressure to produce more food with fewer resources. Drought, exacerbated by climate change, is a major agricultural constraint costing the industry an estimated US$80 billion per year in lost production. Wild relatives of domesticated crops, including wheat (Triticum spp.) and barley (Hordeum vulgare L.), are an underutilized source of drought tolerance genes. However, managing their undesirable characteristics, assessing drought responses, and selecting lines with heritable traits remains a significant challenge. Here, we propose a novel strategy of using multi‐trait selection criteria based on high‐throughput spectral images to facilitate the assessment and selection challenge. The importance of measuring plant capacity for sustained carbon fixation under drought stress is explored, and an image‐based transpiration efficiency (iTE) index obtained via a combination of hyperspectral and thermal imaging, is proposed. Incorporating iTE along with other drought‐related variables in selection criteria will allow the identification of accessions with diverse tolerance mechanisms. A comprehensive approach that merges high‐throughput phenotyping and de novo domestication is proposed for developing drought‐tolerant prebreeding material and providing breeders with access to gene pools containing unexplored drought tolerance mechanisms.</description><subject>Carbon fixation</subject><subject>Cereal crops</subject><subject>Climate change</subject><subject>Criteria</subject><subject>Crops, Agricultural - genetics</subject><subject>de novo domestication</subject><subject>Domestication</subject><subject>Drought</subject><subject>Drought Resistance</subject><subject>Droughts</subject><subject>Gene pools</subject><subject>high‐throughput imaging</subject><subject>Hordeum vulgare</subject><subject>Phenotype</subject><subject>Phenotyping</subject><subject>stomata</subject><subject>Thermal imaging</subject><subject>Transpiration</subject><subject>transpiration efficiency</subject><subject>Triticum</subject><subject>water use efficiency</subject><subject>wild relatives</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10D1PwzAQBmALgWgpDPwBFImlDGn9cXHsESqgSBUwgMRmJY5DWtK42IlQ_z2GFAYkbrnhHr06vQidEjwhYabNppoQyYncQ0MCXMaCsHQfDTGmIubAXwboyPsVxlgmnB6iARNApRB0iMZXmX6LWhu1lYnKru1cWNZFhbPda9WGS21c1mhzjA7KrPbmZLdH6Pnm-mk2jxcPt3ezy0WsGQgZA_C0kFxgI8scaEESabAxmokSNLAkAU1SikuhhcgTyijVOWWgGQFCMOVshMZ97sbZ9874Vq2XXpu6zhpjO6-oZEBTnnAW6PkfurKda8J3QXFJgDIhg7rolXbWe2dKtXHLdea2imD1VZ8K9anv-oI92yV2-doUv_KnrwCmPfhY1mb7f5K6f5z3kZ_jc3XJ</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Guadarrama‐Escobar, Luis M.</creator><creator>Hunt, James</creator><creator>Gurung, Allison</creator><creator>Zarco‐Tejada, Pablo J.</creator><creator>Shabala, Sergey</creator><creator>Camino, Carlos</creator><creator>Hernandez, Pilar</creator><creator>Pourkheirandish, Mohammad</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2345-8981</orcidid><orcidid>https://orcid.org/0000-0003-4337-3600</orcidid><orcidid>https://orcid.org/0000-0001-5166-4454</orcidid><orcidid>https://orcid.org/0000-0001-5857-5366</orcidid><orcidid>https://orcid.org/0000-0003-1433-6165</orcidid><orcidid>https://orcid.org/0000-0003-2884-5622</orcidid><orcidid>https://orcid.org/0000-0001-5188-4406</orcidid><orcidid>https://orcid.org/0009-0009-5983-0010</orcidid></search><sort><creationdate>202404</creationdate><title>Back to the future for drought tolerance</title><author>Guadarrama‐Escobar, Luis M. ; Hunt, James ; Gurung, Allison ; Zarco‐Tejada, Pablo J. ; Shabala, Sergey ; Camino, Carlos ; Hernandez, Pilar ; Pourkheirandish, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3489-4467d9680e9fb42d159e0eec38f4c43554c1720f8c88b52322cb234c314110263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon fixation</topic><topic>Cereal crops</topic><topic>Climate change</topic><topic>Criteria</topic><topic>Crops, Agricultural - genetics</topic><topic>de novo domestication</topic><topic>Domestication</topic><topic>Drought</topic><topic>Drought Resistance</topic><topic>Droughts</topic><topic>Gene pools</topic><topic>high‐throughput imaging</topic><topic>Hordeum vulgare</topic><topic>Phenotype</topic><topic>Phenotyping</topic><topic>stomata</topic><topic>Thermal imaging</topic><topic>Transpiration</topic><topic>transpiration efficiency</topic><topic>Triticum</topic><topic>water use efficiency</topic><topic>wild relatives</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guadarrama‐Escobar, Luis M.</creatorcontrib><creatorcontrib>Hunt, James</creatorcontrib><creatorcontrib>Gurung, Allison</creatorcontrib><creatorcontrib>Zarco‐Tejada, Pablo J.</creatorcontrib><creatorcontrib>Shabala, Sergey</creatorcontrib><creatorcontrib>Camino, Carlos</creatorcontrib><creatorcontrib>Hernandez, Pilar</creatorcontrib><creatorcontrib>Pourkheirandish, Mohammad</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guadarrama‐Escobar, Luis M.</au><au>Hunt, James</au><au>Gurung, Allison</au><au>Zarco‐Tejada, Pablo J.</au><au>Shabala, Sergey</au><au>Camino, Carlos</au><au>Hernandez, Pilar</au><au>Pourkheirandish, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Back to the future for drought tolerance</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2024-04</date><risdate>2024</risdate><volume>242</volume><issue>2</issue><spage>372</spage><epage>383</epage><pages>372-383</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Summary
Global agriculture faces increasing pressure to produce more food with fewer resources. Drought, exacerbated by climate change, is a major agricultural constraint costing the industry an estimated US$80 billion per year in lost production. Wild relatives of domesticated crops, including wheat (Triticum spp.) and barley (Hordeum vulgare L.), are an underutilized source of drought tolerance genes. However, managing their undesirable characteristics, assessing drought responses, and selecting lines with heritable traits remains a significant challenge. Here, we propose a novel strategy of using multi‐trait selection criteria based on high‐throughput spectral images to facilitate the assessment and selection challenge. The importance of measuring plant capacity for sustained carbon fixation under drought stress is explored, and an image‐based transpiration efficiency (iTE) index obtained via a combination of hyperspectral and thermal imaging, is proposed. Incorporating iTE along with other drought‐related variables in selection criteria will allow the identification of accessions with diverse tolerance mechanisms. A comprehensive approach that merges high‐throughput phenotyping and de novo domestication is proposed for developing drought‐tolerant prebreeding material and providing breeders with access to gene pools containing unexplored drought tolerance mechanisms.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38429882</pmid><doi>10.1111/nph.19619</doi><tpages>383</tpages><orcidid>https://orcid.org/0000-0003-2345-8981</orcidid><orcidid>https://orcid.org/0000-0003-4337-3600</orcidid><orcidid>https://orcid.org/0000-0001-5166-4454</orcidid><orcidid>https://orcid.org/0000-0001-5857-5366</orcidid><orcidid>https://orcid.org/0000-0003-1433-6165</orcidid><orcidid>https://orcid.org/0000-0003-2884-5622</orcidid><orcidid>https://orcid.org/0000-0001-5188-4406</orcidid><orcidid>https://orcid.org/0009-0009-5983-0010</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-646X |
ispartof | The New phytologist, 2024-04, Vol.242 (2), p.372-383 |
issn | 0028-646X 1469-8137 |
language | eng |
recordid | cdi_proquest_miscellaneous_2934276563 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Carbon fixation Cereal crops Climate change Criteria Crops, Agricultural - genetics de novo domestication Domestication Drought Drought Resistance Droughts Gene pools high‐throughput imaging Hordeum vulgare Phenotype Phenotyping stomata Thermal imaging Transpiration transpiration efficiency Triticum water use efficiency wild relatives |
title | Back to the future for drought tolerance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A25%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Back%20to%20the%20future%20for%20drought%20tolerance&rft.jtitle=The%20New%20phytologist&rft.au=Guadarrama%E2%80%90Escobar,%20Luis%20M.&rft.date=2024-04&rft.volume=242&rft.issue=2&rft.spage=372&rft.epage=383&rft.pages=372-383&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.19619&rft_dat=%3Cproquest_cross%3E2969142389%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3489-4467d9680e9fb42d159e0eec38f4c43554c1720f8c88b52322cb234c314110263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2969142389&rft_id=info:pmid/38429882&rfr_iscdi=true |