Loading…

Back to the future for drought tolerance

Summary Global agriculture faces increasing pressure to produce more food with fewer resources. Drought, exacerbated by climate change, is a major agricultural constraint costing the industry an estimated US$80 billion per year in lost production. Wild relatives of domesticated crops, including whea...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist 2024-04, Vol.242 (2), p.372-383
Main Authors: Guadarrama‐Escobar, Luis M., Hunt, James, Gurung, Allison, Zarco‐Tejada, Pablo J., Shabala, Sergey, Camino, Carlos, Hernandez, Pilar, Pourkheirandish, Mohammad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3489-4467d9680e9fb42d159e0eec38f4c43554c1720f8c88b52322cb234c314110263
container_end_page 383
container_issue 2
container_start_page 372
container_title The New phytologist
container_volume 242
creator Guadarrama‐Escobar, Luis M.
Hunt, James
Gurung, Allison
Zarco‐Tejada, Pablo J.
Shabala, Sergey
Camino, Carlos
Hernandez, Pilar
Pourkheirandish, Mohammad
description Summary Global agriculture faces increasing pressure to produce more food with fewer resources. Drought, exacerbated by climate change, is a major agricultural constraint costing the industry an estimated US$80 billion per year in lost production. Wild relatives of domesticated crops, including wheat (Triticum spp.) and barley (Hordeum vulgare L.), are an underutilized source of drought tolerance genes. However, managing their undesirable characteristics, assessing drought responses, and selecting lines with heritable traits remains a significant challenge. Here, we propose a novel strategy of using multi‐trait selection criteria based on high‐throughput spectral images to facilitate the assessment and selection challenge. The importance of measuring plant capacity for sustained carbon fixation under drought stress is explored, and an image‐based transpiration efficiency (iTE) index obtained via a combination of hyperspectral and thermal imaging, is proposed. Incorporating iTE along with other drought‐related variables in selection criteria will allow the identification of accessions with diverse tolerance mechanisms. A comprehensive approach that merges high‐throughput phenotyping and de novo domestication is proposed for developing drought‐tolerant prebreeding material and providing breeders with access to gene pools containing unexplored drought tolerance mechanisms.
doi_str_mv 10.1111/nph.19619
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2934276563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2969142389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3489-4467d9680e9fb42d159e0eec38f4c43554c1720f8c88b52322cb234c314110263</originalsourceid><addsrcrecordid>eNp10D1PwzAQBmALgWgpDPwBFImlDGn9cXHsESqgSBUwgMRmJY5DWtK42IlQ_z2GFAYkbrnhHr06vQidEjwhYabNppoQyYncQ0MCXMaCsHQfDTGmIubAXwboyPsVxlgmnB6iARNApRB0iMZXmX6LWhu1lYnKru1cWNZFhbPda9WGS21c1mhzjA7KrPbmZLdH6Pnm-mk2jxcPt3ezy0WsGQgZA_C0kFxgI8scaEESabAxmokSNLAkAU1SikuhhcgTyijVOWWgGQFCMOVshMZ97sbZ9874Vq2XXpu6zhpjO6-oZEBTnnAW6PkfurKda8J3QXFJgDIhg7rolXbWe2dKtXHLdea2imD1VZ8K9anv-oI92yV2-doUv_KnrwCmPfhY1mb7f5K6f5z3kZ_jc3XJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2969142389</pqid></control><display><type>article</type><title>Back to the future for drought tolerance</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Guadarrama‐Escobar, Luis M. ; Hunt, James ; Gurung, Allison ; Zarco‐Tejada, Pablo J. ; Shabala, Sergey ; Camino, Carlos ; Hernandez, Pilar ; Pourkheirandish, Mohammad</creator><creatorcontrib>Guadarrama‐Escobar, Luis M. ; Hunt, James ; Gurung, Allison ; Zarco‐Tejada, Pablo J. ; Shabala, Sergey ; Camino, Carlos ; Hernandez, Pilar ; Pourkheirandish, Mohammad</creatorcontrib><description>Summary Global agriculture faces increasing pressure to produce more food with fewer resources. Drought, exacerbated by climate change, is a major agricultural constraint costing the industry an estimated US$80 billion per year in lost production. Wild relatives of domesticated crops, including wheat (Triticum spp.) and barley (Hordeum vulgare L.), are an underutilized source of drought tolerance genes. However, managing their undesirable characteristics, assessing drought responses, and selecting lines with heritable traits remains a significant challenge. Here, we propose a novel strategy of using multi‐trait selection criteria based on high‐throughput spectral images to facilitate the assessment and selection challenge. The importance of measuring plant capacity for sustained carbon fixation under drought stress is explored, and an image‐based transpiration efficiency (iTE) index obtained via a combination of hyperspectral and thermal imaging, is proposed. Incorporating iTE along with other drought‐related variables in selection criteria will allow the identification of accessions with diverse tolerance mechanisms. A comprehensive approach that merges high‐throughput phenotyping and de novo domestication is proposed for developing drought‐tolerant prebreeding material and providing breeders with access to gene pools containing unexplored drought tolerance mechanisms.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/nph.19619</identifier><identifier>PMID: 38429882</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Carbon fixation ; Cereal crops ; Climate change ; Criteria ; Crops, Agricultural - genetics ; de novo domestication ; Domestication ; Drought ; Drought Resistance ; Droughts ; Gene pools ; high‐throughput imaging ; Hordeum vulgare ; Phenotype ; Phenotyping ; stomata ; Thermal imaging ; Transpiration ; transpiration efficiency ; Triticum ; water use efficiency ; wild relatives</subject><ispartof>The New phytologist, 2024-04, Vol.242 (2), p.372-383</ispartof><rights>2024 The Authors © 2024 New Phytologist Foundation</rights><rights>2024 The Authors New Phytologist © 2024 New Phytologist Foundation.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3489-4467d9680e9fb42d159e0eec38f4c43554c1720f8c88b52322cb234c314110263</cites><orcidid>0000-0003-2345-8981 ; 0000-0003-4337-3600 ; 0000-0001-5166-4454 ; 0000-0001-5857-5366 ; 0000-0003-1433-6165 ; 0000-0003-2884-5622 ; 0000-0001-5188-4406 ; 0009-0009-5983-0010</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38429882$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guadarrama‐Escobar, Luis M.</creatorcontrib><creatorcontrib>Hunt, James</creatorcontrib><creatorcontrib>Gurung, Allison</creatorcontrib><creatorcontrib>Zarco‐Tejada, Pablo J.</creatorcontrib><creatorcontrib>Shabala, Sergey</creatorcontrib><creatorcontrib>Camino, Carlos</creatorcontrib><creatorcontrib>Hernandez, Pilar</creatorcontrib><creatorcontrib>Pourkheirandish, Mohammad</creatorcontrib><title>Back to the future for drought tolerance</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Summary Global agriculture faces increasing pressure to produce more food with fewer resources. Drought, exacerbated by climate change, is a major agricultural constraint costing the industry an estimated US$80 billion per year in lost production. Wild relatives of domesticated crops, including wheat (Triticum spp.) and barley (Hordeum vulgare L.), are an underutilized source of drought tolerance genes. However, managing their undesirable characteristics, assessing drought responses, and selecting lines with heritable traits remains a significant challenge. Here, we propose a novel strategy of using multi‐trait selection criteria based on high‐throughput spectral images to facilitate the assessment and selection challenge. The importance of measuring plant capacity for sustained carbon fixation under drought stress is explored, and an image‐based transpiration efficiency (iTE) index obtained via a combination of hyperspectral and thermal imaging, is proposed. Incorporating iTE along with other drought‐related variables in selection criteria will allow the identification of accessions with diverse tolerance mechanisms. A comprehensive approach that merges high‐throughput phenotyping and de novo domestication is proposed for developing drought‐tolerant prebreeding material and providing breeders with access to gene pools containing unexplored drought tolerance mechanisms.</description><subject>Carbon fixation</subject><subject>Cereal crops</subject><subject>Climate change</subject><subject>Criteria</subject><subject>Crops, Agricultural - genetics</subject><subject>de novo domestication</subject><subject>Domestication</subject><subject>Drought</subject><subject>Drought Resistance</subject><subject>Droughts</subject><subject>Gene pools</subject><subject>high‐throughput imaging</subject><subject>Hordeum vulgare</subject><subject>Phenotype</subject><subject>Phenotyping</subject><subject>stomata</subject><subject>Thermal imaging</subject><subject>Transpiration</subject><subject>transpiration efficiency</subject><subject>Triticum</subject><subject>water use efficiency</subject><subject>wild relatives</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10D1PwzAQBmALgWgpDPwBFImlDGn9cXHsESqgSBUwgMRmJY5DWtK42IlQ_z2GFAYkbrnhHr06vQidEjwhYabNppoQyYncQ0MCXMaCsHQfDTGmIubAXwboyPsVxlgmnB6iARNApRB0iMZXmX6LWhu1lYnKru1cWNZFhbPda9WGS21c1mhzjA7KrPbmZLdH6Pnm-mk2jxcPt3ezy0WsGQgZA_C0kFxgI8scaEESabAxmokSNLAkAU1SikuhhcgTyijVOWWgGQFCMOVshMZ97sbZ9874Vq2XXpu6zhpjO6-oZEBTnnAW6PkfurKda8J3QXFJgDIhg7rolXbWe2dKtXHLdea2imD1VZ8K9anv-oI92yV2-doUv_KnrwCmPfhY1mb7f5K6f5z3kZ_jc3XJ</recordid><startdate>202404</startdate><enddate>202404</enddate><creator>Guadarrama‐Escobar, Luis M.</creator><creator>Hunt, James</creator><creator>Gurung, Allison</creator><creator>Zarco‐Tejada, Pablo J.</creator><creator>Shabala, Sergey</creator><creator>Camino, Carlos</creator><creator>Hernandez, Pilar</creator><creator>Pourkheirandish, Mohammad</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2345-8981</orcidid><orcidid>https://orcid.org/0000-0003-4337-3600</orcidid><orcidid>https://orcid.org/0000-0001-5166-4454</orcidid><orcidid>https://orcid.org/0000-0001-5857-5366</orcidid><orcidid>https://orcid.org/0000-0003-1433-6165</orcidid><orcidid>https://orcid.org/0000-0003-2884-5622</orcidid><orcidid>https://orcid.org/0000-0001-5188-4406</orcidid><orcidid>https://orcid.org/0009-0009-5983-0010</orcidid></search><sort><creationdate>202404</creationdate><title>Back to the future for drought tolerance</title><author>Guadarrama‐Escobar, Luis M. ; Hunt, James ; Gurung, Allison ; Zarco‐Tejada, Pablo J. ; Shabala, Sergey ; Camino, Carlos ; Hernandez, Pilar ; Pourkheirandish, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3489-4467d9680e9fb42d159e0eec38f4c43554c1720f8c88b52322cb234c314110263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Carbon fixation</topic><topic>Cereal crops</topic><topic>Climate change</topic><topic>Criteria</topic><topic>Crops, Agricultural - genetics</topic><topic>de novo domestication</topic><topic>Domestication</topic><topic>Drought</topic><topic>Drought Resistance</topic><topic>Droughts</topic><topic>Gene pools</topic><topic>high‐throughput imaging</topic><topic>Hordeum vulgare</topic><topic>Phenotype</topic><topic>Phenotyping</topic><topic>stomata</topic><topic>Thermal imaging</topic><topic>Transpiration</topic><topic>transpiration efficiency</topic><topic>Triticum</topic><topic>water use efficiency</topic><topic>wild relatives</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guadarrama‐Escobar, Luis M.</creatorcontrib><creatorcontrib>Hunt, James</creatorcontrib><creatorcontrib>Gurung, Allison</creatorcontrib><creatorcontrib>Zarco‐Tejada, Pablo J.</creatorcontrib><creatorcontrib>Shabala, Sergey</creatorcontrib><creatorcontrib>Camino, Carlos</creatorcontrib><creatorcontrib>Hernandez, Pilar</creatorcontrib><creatorcontrib>Pourkheirandish, Mohammad</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guadarrama‐Escobar, Luis M.</au><au>Hunt, James</au><au>Gurung, Allison</au><au>Zarco‐Tejada, Pablo J.</au><au>Shabala, Sergey</au><au>Camino, Carlos</au><au>Hernandez, Pilar</au><au>Pourkheirandish, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Back to the future for drought tolerance</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2024-04</date><risdate>2024</risdate><volume>242</volume><issue>2</issue><spage>372</spage><epage>383</epage><pages>372-383</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Summary Global agriculture faces increasing pressure to produce more food with fewer resources. Drought, exacerbated by climate change, is a major agricultural constraint costing the industry an estimated US$80 billion per year in lost production. Wild relatives of domesticated crops, including wheat (Triticum spp.) and barley (Hordeum vulgare L.), are an underutilized source of drought tolerance genes. However, managing their undesirable characteristics, assessing drought responses, and selecting lines with heritable traits remains a significant challenge. Here, we propose a novel strategy of using multi‐trait selection criteria based on high‐throughput spectral images to facilitate the assessment and selection challenge. The importance of measuring plant capacity for sustained carbon fixation under drought stress is explored, and an image‐based transpiration efficiency (iTE) index obtained via a combination of hyperspectral and thermal imaging, is proposed. Incorporating iTE along with other drought‐related variables in selection criteria will allow the identification of accessions with diverse tolerance mechanisms. A comprehensive approach that merges high‐throughput phenotyping and de novo domestication is proposed for developing drought‐tolerant prebreeding material and providing breeders with access to gene pools containing unexplored drought tolerance mechanisms.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38429882</pmid><doi>10.1111/nph.19619</doi><tpages>383</tpages><orcidid>https://orcid.org/0000-0003-2345-8981</orcidid><orcidid>https://orcid.org/0000-0003-4337-3600</orcidid><orcidid>https://orcid.org/0000-0001-5166-4454</orcidid><orcidid>https://orcid.org/0000-0001-5857-5366</orcidid><orcidid>https://orcid.org/0000-0003-1433-6165</orcidid><orcidid>https://orcid.org/0000-0003-2884-5622</orcidid><orcidid>https://orcid.org/0000-0001-5188-4406</orcidid><orcidid>https://orcid.org/0009-0009-5983-0010</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2024-04, Vol.242 (2), p.372-383
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_2934276563
source Wiley-Blackwell Read & Publish Collection
subjects Carbon fixation
Cereal crops
Climate change
Criteria
Crops, Agricultural - genetics
de novo domestication
Domestication
Drought
Drought Resistance
Droughts
Gene pools
high‐throughput imaging
Hordeum vulgare
Phenotype
Phenotyping
stomata
Thermal imaging
Transpiration
transpiration efficiency
Triticum
water use efficiency
wild relatives
title Back to the future for drought tolerance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A25%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Back%20to%20the%20future%20for%20drought%20tolerance&rft.jtitle=The%20New%20phytologist&rft.au=Guadarrama%E2%80%90Escobar,%20Luis%20M.&rft.date=2024-04&rft.volume=242&rft.issue=2&rft.spage=372&rft.epage=383&rft.pages=372-383&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/nph.19619&rft_dat=%3Cproquest_cross%3E2969142389%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3489-4467d9680e9fb42d159e0eec38f4c43554c1720f8c88b52322cb234c314110263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2969142389&rft_id=info:pmid/38429882&rfr_iscdi=true