Loading…

Time dependent vibrational electronic coupled cluster (VECC) theory for non-adiabatic nuclear dynamics

A time-dependent vibrational electronic coupled-cluster (VECC) approach is proposed to simulate photo-electron/UV-VIS absorption spectra as well as time-dependent properties for non-adiabatic vibronic models, going beyond the Born–Oppenheimer approximation. A detailed derivation of the equations of...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2024-03, Vol.160 (9)
Main Authors: Bao, Songhao, Raymond, Neil, Nooijen, Marcel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c383t-74c6b81f754998ca50109937770ebd5f4a3bb5e0b8296a743fcbd3e12e65c7103
cites cdi_FETCH-LOGICAL-c383t-74c6b81f754998ca50109937770ebd5f4a3bb5e0b8296a743fcbd3e12e65c7103
container_end_page
container_issue 9
container_start_page
container_title The Journal of chemical physics
container_volume 160
creator Bao, Songhao
Raymond, Neil
Nooijen, Marcel
description A time-dependent vibrational electronic coupled-cluster (VECC) approach is proposed to simulate photo-electron/UV-VIS absorption spectra as well as time-dependent properties for non-adiabatic vibronic models, going beyond the Born–Oppenheimer approximation. A detailed derivation of the equations of motion and a motivation for the ansatz are presented. The VECC method employs second-quantized bosonic construction operators and a mixed linear and exponential ansatz to form a compact representation of the time-dependent wave-function. Importantly, the method does not require a basis set, has only a few user-defined inputs, and has a classical (polynomial) scaling with respect to the number of degrees of freedom (of the vibronic model), resulting in a favorable computational cost. In benchmark applications to small models and molecules, the VECC method provides accurate results compared to multi-configurational time-dependent Hartree calculations when predicting short-time dynamical properties (i.e., photo-electron/UV–VIS absorption spectra) for non-adiabatic vibronic models. To illustrate the capabilities, the VECC method is also successfully applied to a large vibronic model for hexahelicene with 14 electronic states and 63 normal modes, developed in the group by Aranda and Santoro [J. Chem. Theory Comput. 17, 1691, (2021)].
doi_str_mv 10.1063/5.0190034
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2934277294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2933620679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-74c6b81f754998ca50109937770ebd5f4a3bb5e0b8296a743fcbd3e12e65c7103</originalsourceid><addsrcrecordid>eNp90Etr3DAUhmERWpLJZdE_UATdJAEnRxdL1jIMuRQC3aTZGkk-pgq2NJXswPz7OJlpF110pc2jD85LyBcGVwyUuK6vgBkAIQ_IikFjKq0MfCIrAM4qo0AdkeNSXgCAaS4PyZFoJFc11yvSP4URaYcbjB3Gib4Gl-0UUrQDxQH9lFMMnvo0bwbsqB_mMmGm58-36_UFnX5hylvap0xjipXtgnXLb0_j7Ae0mXbbaMfgyyn53Nuh4Nn-PSE_726f1g_V44_77-ubx8qLRkyVll65hvW6lsY03tbAwBihtQZ0Xd1LK5yrEVzDjbJait67TiDjqGqvGYgTcr7b3eT0e8YytWMoHofBRkxzabkRkmvNjVzot3_oS5rzcveHEoqD0mZRFzvlcyolY99uchht3rYM2vf4bd3u4y_2635xdiN2f-Wf2gu43IHiw_RR-T9rbyt3iwc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2933620679</pqid></control><display><type>article</type><title>Time dependent vibrational electronic coupled cluster (VECC) theory for non-adiabatic nuclear dynamics</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>AIP_美国物理联合会现刊(与NSTL共建)</source><creator>Bao, Songhao ; Raymond, Neil ; Nooijen, Marcel</creator><creatorcontrib>Bao, Songhao ; Raymond, Neil ; Nooijen, Marcel</creatorcontrib><description>A time-dependent vibrational electronic coupled-cluster (VECC) approach is proposed to simulate photo-electron/UV-VIS absorption spectra as well as time-dependent properties for non-adiabatic vibronic models, going beyond the Born–Oppenheimer approximation. A detailed derivation of the equations of motion and a motivation for the ansatz are presented. The VECC method employs second-quantized bosonic construction operators and a mixed linear and exponential ansatz to form a compact representation of the time-dependent wave-function. Importantly, the method does not require a basis set, has only a few user-defined inputs, and has a classical (polynomial) scaling with respect to the number of degrees of freedom (of the vibronic model), resulting in a favorable computational cost. In benchmark applications to small models and molecules, the VECC method provides accurate results compared to multi-configurational time-dependent Hartree calculations when predicting short-time dynamical properties (i.e., photo-electron/UV–VIS absorption spectra) for non-adiabatic vibronic models. To illustrate the capabilities, the VECC method is also successfully applied to a large vibronic model for hexahelicene with 14 electronic states and 63 normal modes, developed in the group by Aranda and Santoro [J. Chem. Theory Comput. 17, 1691, (2021)].</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0190034</identifier><identifier>PMID: 38426527</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Absorption spectra ; Adiabatic flow ; Clusters ; Electron states ; Equations of motion ; Mathematical analysis ; Polynomials ; Time dependence</subject><ispartof>The Journal of chemical physics, 2024-03, Vol.160 (9)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-74c6b81f754998ca50109937770ebd5f4a3bb5e0b8296a743fcbd3e12e65c7103</citedby><cites>FETCH-LOGICAL-c383t-74c6b81f754998ca50109937770ebd5f4a3bb5e0b8296a743fcbd3e12e65c7103</cites><orcidid>0009-0005-9979-8415 ; 0000-0002-5059-7955 ; 0000-0002-9691-563X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0190034$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,782,784,795,27924,27925,76255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38426527$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bao, Songhao</creatorcontrib><creatorcontrib>Raymond, Neil</creatorcontrib><creatorcontrib>Nooijen, Marcel</creatorcontrib><title>Time dependent vibrational electronic coupled cluster (VECC) theory for non-adiabatic nuclear dynamics</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>A time-dependent vibrational electronic coupled-cluster (VECC) approach is proposed to simulate photo-electron/UV-VIS absorption spectra as well as time-dependent properties for non-adiabatic vibronic models, going beyond the Born–Oppenheimer approximation. A detailed derivation of the equations of motion and a motivation for the ansatz are presented. The VECC method employs second-quantized bosonic construction operators and a mixed linear and exponential ansatz to form a compact representation of the time-dependent wave-function. Importantly, the method does not require a basis set, has only a few user-defined inputs, and has a classical (polynomial) scaling with respect to the number of degrees of freedom (of the vibronic model), resulting in a favorable computational cost. In benchmark applications to small models and molecules, the VECC method provides accurate results compared to multi-configurational time-dependent Hartree calculations when predicting short-time dynamical properties (i.e., photo-electron/UV–VIS absorption spectra) for non-adiabatic vibronic models. To illustrate the capabilities, the VECC method is also successfully applied to a large vibronic model for hexahelicene with 14 electronic states and 63 normal modes, developed in the group by Aranda and Santoro [J. Chem. Theory Comput. 17, 1691, (2021)].</description><subject>Absorption spectra</subject><subject>Adiabatic flow</subject><subject>Clusters</subject><subject>Electron states</subject><subject>Equations of motion</subject><subject>Mathematical analysis</subject><subject>Polynomials</subject><subject>Time dependence</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90Etr3DAUhmERWpLJZdE_UATdJAEnRxdL1jIMuRQC3aTZGkk-pgq2NJXswPz7OJlpF110pc2jD85LyBcGVwyUuK6vgBkAIQ_IikFjKq0MfCIrAM4qo0AdkeNSXgCAaS4PyZFoJFc11yvSP4URaYcbjB3Gib4Gl-0UUrQDxQH9lFMMnvo0bwbsqB_mMmGm58-36_UFnX5hylvap0xjipXtgnXLb0_j7Ae0mXbbaMfgyyn53Nuh4Nn-PSE_726f1g_V44_77-ubx8qLRkyVll65hvW6lsY03tbAwBihtQZ0Xd1LK5yrEVzDjbJait67TiDjqGqvGYgTcr7b3eT0e8YytWMoHofBRkxzabkRkmvNjVzot3_oS5rzcveHEoqD0mZRFzvlcyolY99uchht3rYM2vf4bd3u4y_2635xdiN2f-Wf2gu43IHiw_RR-T9rbyt3iwc</recordid><startdate>20240307</startdate><enddate>20240307</enddate><creator>Bao, Songhao</creator><creator>Raymond, Neil</creator><creator>Nooijen, Marcel</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0009-0005-9979-8415</orcidid><orcidid>https://orcid.org/0000-0002-5059-7955</orcidid><orcidid>https://orcid.org/0000-0002-9691-563X</orcidid></search><sort><creationdate>20240307</creationdate><title>Time dependent vibrational electronic coupled cluster (VECC) theory for non-adiabatic nuclear dynamics</title><author>Bao, Songhao ; Raymond, Neil ; Nooijen, Marcel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-74c6b81f754998ca50109937770ebd5f4a3bb5e0b8296a743fcbd3e12e65c7103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectra</topic><topic>Adiabatic flow</topic><topic>Clusters</topic><topic>Electron states</topic><topic>Equations of motion</topic><topic>Mathematical analysis</topic><topic>Polynomials</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Songhao</creatorcontrib><creatorcontrib>Raymond, Neil</creatorcontrib><creatorcontrib>Nooijen, Marcel</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Songhao</au><au>Raymond, Neil</au><au>Nooijen, Marcel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time dependent vibrational electronic coupled cluster (VECC) theory for non-adiabatic nuclear dynamics</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-03-07</date><risdate>2024</risdate><volume>160</volume><issue>9</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>A time-dependent vibrational electronic coupled-cluster (VECC) approach is proposed to simulate photo-electron/UV-VIS absorption spectra as well as time-dependent properties for non-adiabatic vibronic models, going beyond the Born–Oppenheimer approximation. A detailed derivation of the equations of motion and a motivation for the ansatz are presented. The VECC method employs second-quantized bosonic construction operators and a mixed linear and exponential ansatz to form a compact representation of the time-dependent wave-function. Importantly, the method does not require a basis set, has only a few user-defined inputs, and has a classical (polynomial) scaling with respect to the number of degrees of freedom (of the vibronic model), resulting in a favorable computational cost. In benchmark applications to small models and molecules, the VECC method provides accurate results compared to multi-configurational time-dependent Hartree calculations when predicting short-time dynamical properties (i.e., photo-electron/UV–VIS absorption spectra) for non-adiabatic vibronic models. To illustrate the capabilities, the VECC method is also successfully applied to a large vibronic model for hexahelicene with 14 electronic states and 63 normal modes, developed in the group by Aranda and Santoro [J. Chem. Theory Comput. 17, 1691, (2021)].</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>38426527</pmid><doi>10.1063/5.0190034</doi><tpages>18</tpages><orcidid>https://orcid.org/0009-0005-9979-8415</orcidid><orcidid>https://orcid.org/0000-0002-5059-7955</orcidid><orcidid>https://orcid.org/0000-0002-9691-563X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2024-03, Vol.160 (9)
issn 0021-9606
1089-7690
language eng
recordid cdi_proquest_miscellaneous_2934277294
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); AIP_美国物理联合会现刊(与NSTL共建)
subjects Absorption spectra
Adiabatic flow
Clusters
Electron states
Equations of motion
Mathematical analysis
Polynomials
Time dependence
title Time dependent vibrational electronic coupled cluster (VECC) theory for non-adiabatic nuclear dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A10%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20dependent%20vibrational%20electronic%20coupled%20cluster%20(VECC)%20theory%20for%20non-adiabatic%20nuclear%20dynamics&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Bao,%20Songhao&rft.date=2024-03-07&rft.volume=160&rft.issue=9&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0190034&rft_dat=%3Cproquest_cross%3E2933620679%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c383t-74c6b81f754998ca50109937770ebd5f4a3bb5e0b8296a743fcbd3e12e65c7103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2933620679&rft_id=info:pmid/38426527&rfr_iscdi=true