Loading…

Local and superlinear convergence of quasi-Newton methods based on modified secant conditions

For solving unconstrained minimization problems, quasi-Newton methods are popular iterative methods. The secant condition which employs only the gradient information is imposed on these methods. Several researchers paid attention to other secant conditions to get a better approximation of the Hessia...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics 2007-08, Vol.205 (1), p.617-632
Main Authors: Yabe, Hiroshi, Ogasawara, Hideho, Yoshino, Masayuki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c401t-b54bcab93d05541466c245883bb3207c7641cadf79971786d3e2e4244e8935ae3
cites cdi_FETCH-LOGICAL-c401t-b54bcab93d05541466c245883bb3207c7641cadf79971786d3e2e4244e8935ae3
container_end_page 632
container_issue 1
container_start_page 617
container_title Journal of computational and applied mathematics
container_volume 205
creator Yabe, Hiroshi
Ogasawara, Hideho
Yoshino, Masayuki
description For solving unconstrained minimization problems, quasi-Newton methods are popular iterative methods. The secant condition which employs only the gradient information is imposed on these methods. Several researchers paid attention to other secant conditions to get a better approximation of the Hessian matrix of the objective function. Recently, Zhang et al. [New quasi-Newton equation and related methods for unconstrained optimization, J. Optim. Theory Appl. 102 (1999) 147–167] and Zhang and Xu [Properties and numerical performance of quasi-Newton methods with modified quasi-Newton equations, J. Comput. Appl. Math. 137 (2001) 269–278] proposed the modified secant condition which uses both gradient and function value information in order to get a higher order accuracy in approximating the second curvature of the objective function. They showed the local and q-superlinear convergence property of the BFGS-like and DFP-like updates based on their proposed secant condition. In this paper, we incorporate one parameter into this secant condition to smoothly switch the standard secant condition and the secant condition of Zhang et al. We consider a modified Broyden family which includes the BFGS-like and the DFP-like updates proposed by Zhang et al. We prove the local and q-superlinear convergence of our method.
doi_str_mv 10.1016/j.cam.2006.05.018
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29344315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037704270600344X</els_id><sourcerecordid>29344315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-b54bcab93d05541466c245883bb3207c7641cadf79971786d3e2e4244e8935ae3</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVJoJttfkBvvqQ3u5IlWzI5haVfsCSX5hiELI0bLba0q_FuyL-vzC701tMMw_POMA8hnxmtGGXt111lzVTVlLYVbSrK1AeyYkp2JZNSXZEV5VKWVNTyI7lB3NEMdkysyMs2WjMWJrgCj3tIow9gUmFjOEH6A8FCEYficDToy0d4m2MoJphfo8OiNwiuWAbR-cHnHsGaMC9h52cfA34i14MZEW4vdU2ev3_7vflZbp9-_No8bEsrKJvLvhG9NX3HHW0awUTb2lo0SvG-5zWVVraCWeMG2XWSSdU6DjWIWghQHW8M8DX5ct67T_FwBJz15NHCOJoA8Yi67rgQnDUZZGfQpoiYYND75CeT3jWjehGpdzqL1ItITRudRebM3WW5wexqSCZYj_-CSgqVzWbu_sxB_vTkIWm0fjHofAI7axf9f678BUloiJU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29344315</pqid></control><display><type>article</type><title>Local and superlinear convergence of quasi-Newton methods based on modified secant conditions</title><source>ScienceDirect Journals</source><creator>Yabe, Hiroshi ; Ogasawara, Hideho ; Yoshino, Masayuki</creator><creatorcontrib>Yabe, Hiroshi ; Ogasawara, Hideho ; Yoshino, Masayuki</creatorcontrib><description>For solving unconstrained minimization problems, quasi-Newton methods are popular iterative methods. The secant condition which employs only the gradient information is imposed on these methods. Several researchers paid attention to other secant conditions to get a better approximation of the Hessian matrix of the objective function. Recently, Zhang et al. [New quasi-Newton equation and related methods for unconstrained optimization, J. Optim. Theory Appl. 102 (1999) 147–167] and Zhang and Xu [Properties and numerical performance of quasi-Newton methods with modified quasi-Newton equations, J. Comput. Appl. Math. 137 (2001) 269–278] proposed the modified secant condition which uses both gradient and function value information in order to get a higher order accuracy in approximating the second curvature of the objective function. They showed the local and q-superlinear convergence property of the BFGS-like and DFP-like updates based on their proposed secant condition. In this paper, we incorporate one parameter into this secant condition to smoothly switch the standard secant condition and the secant condition of Zhang et al. We consider a modified Broyden family which includes the BFGS-like and the DFP-like updates proposed by Zhang et al. We prove the local and q-superlinear convergence of our method.</description><identifier>ISSN: 0377-0427</identifier><identifier>EISSN: 1879-1778</identifier><identifier>DOI: 10.1016/j.cam.2006.05.018</identifier><identifier>CODEN: JCAMDI</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Algebra ; Broyden family ; Calculus of variations and optimal control ; Exact sciences and technology ; Global analysis, analysis on manifolds ; Linear and multilinear algebra, matrix theory ; Local and q-superlinear convergence ; Mathematical analysis ; Mathematics ; Modified secant condition ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical methods in mathematical programming, optimization and calculus of variations ; Quasi-Newton method ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds ; Unconstrained minimization</subject><ispartof>Journal of computational and applied mathematics, 2007-08, Vol.205 (1), p.617-632</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-b54bcab93d05541466c245883bb3207c7641cadf79971786d3e2e4244e8935ae3</citedby><cites>FETCH-LOGICAL-c401t-b54bcab93d05541466c245883bb3207c7641cadf79971786d3e2e4244e8935ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18748042$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yabe, Hiroshi</creatorcontrib><creatorcontrib>Ogasawara, Hideho</creatorcontrib><creatorcontrib>Yoshino, Masayuki</creatorcontrib><title>Local and superlinear convergence of quasi-Newton methods based on modified secant conditions</title><title>Journal of computational and applied mathematics</title><description>For solving unconstrained minimization problems, quasi-Newton methods are popular iterative methods. The secant condition which employs only the gradient information is imposed on these methods. Several researchers paid attention to other secant conditions to get a better approximation of the Hessian matrix of the objective function. Recently, Zhang et al. [New quasi-Newton equation and related methods for unconstrained optimization, J. Optim. Theory Appl. 102 (1999) 147–167] and Zhang and Xu [Properties and numerical performance of quasi-Newton methods with modified quasi-Newton equations, J. Comput. Appl. Math. 137 (2001) 269–278] proposed the modified secant condition which uses both gradient and function value information in order to get a higher order accuracy in approximating the second curvature of the objective function. They showed the local and q-superlinear convergence property of the BFGS-like and DFP-like updates based on their proposed secant condition. In this paper, we incorporate one parameter into this secant condition to smoothly switch the standard secant condition and the secant condition of Zhang et al. We consider a modified Broyden family which includes the BFGS-like and the DFP-like updates proposed by Zhang et al. We prove the local and q-superlinear convergence of our method.</description><subject>Algebra</subject><subject>Broyden family</subject><subject>Calculus of variations and optimal control</subject><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Linear and multilinear algebra, matrix theory</subject><subject>Local and q-superlinear convergence</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Modified secant condition</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical methods in mathematical programming, optimization and calculus of variations</subject><subject>Quasi-Newton method</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><subject>Unconstrained minimization</subject><issn>0377-0427</issn><issn>1879-1778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVJoJttfkBvvqQ3u5IlWzI5haVfsCSX5hiELI0bLba0q_FuyL-vzC701tMMw_POMA8hnxmtGGXt111lzVTVlLYVbSrK1AeyYkp2JZNSXZEV5VKWVNTyI7lB3NEMdkysyMs2WjMWJrgCj3tIow9gUmFjOEH6A8FCEYficDToy0d4m2MoJphfo8OiNwiuWAbR-cHnHsGaMC9h52cfA34i14MZEW4vdU2ev3_7vflZbp9-_No8bEsrKJvLvhG9NX3HHW0awUTb2lo0SvG-5zWVVraCWeMG2XWSSdU6DjWIWghQHW8M8DX5ct67T_FwBJz15NHCOJoA8Yi67rgQnDUZZGfQpoiYYND75CeT3jWjehGpdzqL1ItITRudRebM3WW5wexqSCZYj_-CSgqVzWbu_sxB_vTkIWm0fjHofAI7axf9f678BUloiJU</recordid><startdate>20070801</startdate><enddate>20070801</enddate><creator>Yabe, Hiroshi</creator><creator>Ogasawara, Hideho</creator><creator>Yoshino, Masayuki</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070801</creationdate><title>Local and superlinear convergence of quasi-Newton methods based on modified secant conditions</title><author>Yabe, Hiroshi ; Ogasawara, Hideho ; Yoshino, Masayuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-b54bcab93d05541466c245883bb3207c7641cadf79971786d3e2e4244e8935ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algebra</topic><topic>Broyden family</topic><topic>Calculus of variations and optimal control</topic><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Linear and multilinear algebra, matrix theory</topic><topic>Local and q-superlinear convergence</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Modified secant condition</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical methods in mathematical programming, optimization and calculus of variations</topic><topic>Quasi-Newton method</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><topic>Unconstrained minimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yabe, Hiroshi</creatorcontrib><creatorcontrib>Ogasawara, Hideho</creatorcontrib><creatorcontrib>Yoshino, Masayuki</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of computational and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yabe, Hiroshi</au><au>Ogasawara, Hideho</au><au>Yoshino, Masayuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local and superlinear convergence of quasi-Newton methods based on modified secant conditions</atitle><jtitle>Journal of computational and applied mathematics</jtitle><date>2007-08-01</date><risdate>2007</risdate><volume>205</volume><issue>1</issue><spage>617</spage><epage>632</epage><pages>617-632</pages><issn>0377-0427</issn><eissn>1879-1778</eissn><coden>JCAMDI</coden><abstract>For solving unconstrained minimization problems, quasi-Newton methods are popular iterative methods. The secant condition which employs only the gradient information is imposed on these methods. Several researchers paid attention to other secant conditions to get a better approximation of the Hessian matrix of the objective function. Recently, Zhang et al. [New quasi-Newton equation and related methods for unconstrained optimization, J. Optim. Theory Appl. 102 (1999) 147–167] and Zhang and Xu [Properties and numerical performance of quasi-Newton methods with modified quasi-Newton equations, J. Comput. Appl. Math. 137 (2001) 269–278] proposed the modified secant condition which uses both gradient and function value information in order to get a higher order accuracy in approximating the second curvature of the objective function. They showed the local and q-superlinear convergence property of the BFGS-like and DFP-like updates based on their proposed secant condition. In this paper, we incorporate one parameter into this secant condition to smoothly switch the standard secant condition and the secant condition of Zhang et al. We consider a modified Broyden family which includes the BFGS-like and the DFP-like updates proposed by Zhang et al. We prove the local and q-superlinear convergence of our method.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cam.2006.05.018</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0427
ispartof Journal of computational and applied mathematics, 2007-08, Vol.205 (1), p.617-632
issn 0377-0427
1879-1778
language eng
recordid cdi_proquest_miscellaneous_29344315
source ScienceDirect Journals
subjects Algebra
Broyden family
Calculus of variations and optimal control
Exact sciences and technology
Global analysis, analysis on manifolds
Linear and multilinear algebra, matrix theory
Local and q-superlinear convergence
Mathematical analysis
Mathematics
Modified secant condition
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in mathematical programming, optimization and calculus of variations
Quasi-Newton method
Sciences and techniques of general use
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
Unconstrained minimization
title Local and superlinear convergence of quasi-Newton methods based on modified secant conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A44%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20and%20superlinear%20convergence%20of%20quasi-Newton%20methods%20based%20on%20modified%20secant%20conditions&rft.jtitle=Journal%20of%20computational%20and%20applied%20mathematics&rft.au=Yabe,%20Hiroshi&rft.date=2007-08-01&rft.volume=205&rft.issue=1&rft.spage=617&rft.epage=632&rft.pages=617-632&rft.issn=0377-0427&rft.eissn=1879-1778&rft.coden=JCAMDI&rft_id=info:doi/10.1016/j.cam.2006.05.018&rft_dat=%3Cproquest_cross%3E29344315%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-b54bcab93d05541466c245883bb3207c7641cadf79971786d3e2e4244e8935ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29344315&rft_id=info:pmid/&rfr_iscdi=true