Loading…

Magnetic structures and coherence of rare earth superlattices

Neutron and X-ray scattering techniques have been used to characterise and study the rare earth superlattices and the superlattices of Laves phase materials. For the rare earth superlattices systems such as Ho/Y, Ho/Lu, Dy/Y and Ho/Dy have magnetic structures with coherence over hundreds of angstrom...

Full description

Saved in:
Bibliographic Details
Published in:Physica. B, Condensed matter Condensed matter, 2004-07, Vol.350 (1), p.1-10
Main Author: Cowley, R.A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c332t-2411490422c78c6c0f8be2ab5c074e804aa329dad0f89276fccd105395ad8bde3
cites cdi_FETCH-LOGICAL-c332t-2411490422c78c6c0f8be2ab5c074e804aa329dad0f89276fccd105395ad8bde3
container_end_page 10
container_issue 1
container_start_page 1
container_title Physica. B, Condensed matter
container_volume 350
creator Cowley, R.A
description Neutron and X-ray scattering techniques have been used to characterise and study the rare earth superlattices and the superlattices of Laves phase materials. For the rare earth superlattices systems such as Ho/Y, Ho/Lu, Dy/Y and Ho/Dy have magnetic structures with coherence over hundreds of angstroms. In contrast other systems such as Ho/Pr, or Ho/Sc or Ho/Er do not have long-range coherence. It is argued that this is because the conduction electrons can cross the interfaces easily in the first group of materials but that in the second they cannot due to different Fermi surfaces, different lattice constants or different magnetic structures. The Laves phase systems are ferromagnets but with the rare earth materials polarised oppositely to the 3d transition metals. The phase diagram is then complex and depends both on the relative and absolute thickness of the constituents.
doi_str_mv 10.1016/j.physb.2004.04.017
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29350557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452604005782</els_id><sourcerecordid>29350557</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-2411490422c78c6c0f8be2ab5c074e804aa329dad0f89276fccd105395ad8bde3</originalsourceid><addsrcrecordid>eNp9kDtPxDAQhF2AxHHwC2hc0SX4lVdxBTrxkg7RQG056w3nUy4JtoN0_56EULMaaYudb6UZQm44Sznj-d0hHfanUKeCMZXO4sUZWbFK8ERlIr8glyEc2DS84CuyeTWfHUYHNEQ_Qhw9Bmo6S6Hfo8cOkPYN9cYjRePjnoZxQN-aOCEYrsh5Y9qA1397TT4eH963z8nu7elle79LQEoRE6E4VxVTQkBRQg6sKWsUps6AFQpLpoyRorLGTodKFHkDYDnLZJUZW9YW5ZrcLn8H33-NGKI-ugDYtqbDfgxaVDJjWVZMRrkYwfcheGz04N3R-JPmTM_16IP-rUfP9ehZfKY2C4VThm-HXgdwc3brPELUtnf_8j-VD3HG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29350557</pqid></control><display><type>article</type><title>Magnetic structures and coherence of rare earth superlattices</title><source>ScienceDirect Journals</source><creator>Cowley, R.A</creator><creatorcontrib>Cowley, R.A</creatorcontrib><description>Neutron and X-ray scattering techniques have been used to characterise and study the rare earth superlattices and the superlattices of Laves phase materials. For the rare earth superlattices systems such as Ho/Y, Ho/Lu, Dy/Y and Ho/Dy have magnetic structures with coherence over hundreds of angstroms. In contrast other systems such as Ho/Pr, or Ho/Sc or Ho/Er do not have long-range coherence. It is argued that this is because the conduction electrons can cross the interfaces easily in the first group of materials but that in the second they cannot due to different Fermi surfaces, different lattice constants or different magnetic structures. The Laves phase systems are ferromagnets but with the rare earth materials polarised oppositely to the 3d transition metals. The phase diagram is then complex and depends both on the relative and absolute thickness of the constituents.</description><identifier>ISSN: 0921-4526</identifier><identifier>DOI: 10.1016/j.physb.2004.04.017</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Coherence ; Exchange spring ; Ferromagnetism ; Magnetic Structure ; Superlattices</subject><ispartof>Physica. B, Condensed matter, 2004-07, Vol.350 (1), p.1-10</ispartof><rights>2004 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-2411490422c78c6c0f8be2ab5c074e804aa329dad0f89276fccd105395ad8bde3</citedby><cites>FETCH-LOGICAL-c332t-2411490422c78c6c0f8be2ab5c074e804aa329dad0f89276fccd105395ad8bde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Cowley, R.A</creatorcontrib><title>Magnetic structures and coherence of rare earth superlattices</title><title>Physica. B, Condensed matter</title><description>Neutron and X-ray scattering techniques have been used to characterise and study the rare earth superlattices and the superlattices of Laves phase materials. For the rare earth superlattices systems such as Ho/Y, Ho/Lu, Dy/Y and Ho/Dy have magnetic structures with coherence over hundreds of angstroms. In contrast other systems such as Ho/Pr, or Ho/Sc or Ho/Er do not have long-range coherence. It is argued that this is because the conduction electrons can cross the interfaces easily in the first group of materials but that in the second they cannot due to different Fermi surfaces, different lattice constants or different magnetic structures. The Laves phase systems are ferromagnets but with the rare earth materials polarised oppositely to the 3d transition metals. The phase diagram is then complex and depends both on the relative and absolute thickness of the constituents.</description><subject>Coherence</subject><subject>Exchange spring</subject><subject>Ferromagnetism</subject><subject>Magnetic Structure</subject><subject>Superlattices</subject><issn>0921-4526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPxDAQhF2AxHHwC2hc0SX4lVdxBTrxkg7RQG056w3nUy4JtoN0_56EULMaaYudb6UZQm44Sznj-d0hHfanUKeCMZXO4sUZWbFK8ERlIr8glyEc2DS84CuyeTWfHUYHNEQ_Qhw9Bmo6S6Hfo8cOkPYN9cYjRePjnoZxQN-aOCEYrsh5Y9qA1397TT4eH963z8nu7elle79LQEoRE6E4VxVTQkBRQg6sKWsUps6AFQpLpoyRorLGTodKFHkDYDnLZJUZW9YW5ZrcLn8H33-NGKI-ugDYtqbDfgxaVDJjWVZMRrkYwfcheGz04N3R-JPmTM_16IP-rUfP9ehZfKY2C4VThm-HXgdwc3brPELUtnf_8j-VD3HG</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>Cowley, R.A</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20040701</creationdate><title>Magnetic structures and coherence of rare earth superlattices</title><author>Cowley, R.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-2411490422c78c6c0f8be2ab5c074e804aa329dad0f89276fccd105395ad8bde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Coherence</topic><topic>Exchange spring</topic><topic>Ferromagnetism</topic><topic>Magnetic Structure</topic><topic>Superlattices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cowley, R.A</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cowley, R.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic structures and coherence of rare earth superlattices</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2004-07-01</date><risdate>2004</risdate><volume>350</volume><issue>1</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0921-4526</issn><abstract>Neutron and X-ray scattering techniques have been used to characterise and study the rare earth superlattices and the superlattices of Laves phase materials. For the rare earth superlattices systems such as Ho/Y, Ho/Lu, Dy/Y and Ho/Dy have magnetic structures with coherence over hundreds of angstroms. In contrast other systems such as Ho/Pr, or Ho/Sc or Ho/Er do not have long-range coherence. It is argued that this is because the conduction electrons can cross the interfaces easily in the first group of materials but that in the second they cannot due to different Fermi surfaces, different lattice constants or different magnetic structures. The Laves phase systems are ferromagnets but with the rare earth materials polarised oppositely to the 3d transition metals. The phase diagram is then complex and depends both on the relative and absolute thickness of the constituents.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2004.04.017</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-4526
ispartof Physica. B, Condensed matter, 2004-07, Vol.350 (1), p.1-10
issn 0921-4526
language eng
recordid cdi_proquest_miscellaneous_29350557
source ScienceDirect Journals
subjects Coherence
Exchange spring
Ferromagnetism
Magnetic Structure
Superlattices
title Magnetic structures and coherence of rare earth superlattices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T00%3A37%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20structures%20and%20coherence%20of%20rare%20earth%20superlattices&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Cowley,%20R.A&rft.date=2004-07-01&rft.volume=350&rft.issue=1&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0921-4526&rft_id=info:doi/10.1016/j.physb.2004.04.017&rft_dat=%3Cproquest_cross%3E29350557%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c332t-2411490422c78c6c0f8be2ab5c074e804aa329dad0f89276fccd105395ad8bde3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29350557&rft_id=info:pmid/&rfr_iscdi=true