Loading…
Fabrication of multiferroic composite actuator material by combining superelastic TiNi filler and a magnetostrictive Ni matrix
This research aims to design and verify a new magnetically driven multiferroic composite actuator material which is characterized by large strain and a rapid response speed. The composite actuator material is designed to consist of a magnetostrictive Ni matrix and superelastic TiNi alloy fiber fille...
Saved in:
Published in: | Smart materials and structures 2006-10, Vol.15 (5), p.N124-N128 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This research aims to design and verify a new magnetically driven multiferroic composite actuator material which is characterized by large strain and a rapid response speed. The composite actuator material is designed to consist of a magnetostrictive Ni matrix and superelastic TiNi alloy fiber fillers whose volume fraction was changed. The spark plasma sintering (SPS) method which is characterized by short time and low temperature processing was used to join these two different material elements. Cross-sectional observation by optical micrograph, mechanical compression tests, and magnetostriction measurements were carried out to verify the perfection of the adhesion state of the TiNi filler and nickel matrix as well as the amplification effect of magnetostriction. As the experimental result, the amplification effect of about a maximum of 1.5 times magnetostriction was verified in the fabricated composite actuator. |
---|---|
ISSN: | 0964-1726 1361-665X |
DOI: | 10.1088/0964-1726/15/5/N04 |