Loading…
Microstructure and nano-hardness analyses of stress corrosion cracking, utilizing 316L core shroud of BWR power reactors
The water cooled shield blanket made of Type 316L SS for the international thermonuclear experimental reactor (ITER) has potential issues related to stress corrosion cracking (SCC). Shroud mock-ups and boat samples taken from the core shroud of the boiling water reactor (BWR) with SCC were investiga...
Saved in:
Published in: | Fusion engineering and design 2006-02, Vol.81 (8), p.1099-1103 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The water cooled shield blanket made of Type 316L SS for the international thermonuclear experimental reactor (ITER) has potential issues related to stress corrosion cracking (SCC). Shroud mock-ups and boat samples taken from the core shroud of the boiling water reactor (BWR) with SCC were investigated from the viewpoint of microstructures and nano-hardness. Fine grains and deformation bands were observed in the hardened surface thin layers of the shroud mock-up, where hardness profiles in the ground portion was different from those in the milled portion. In the fine grain region, crevices were found only in the ground surface. In the core shroud, hardened surface regions were also found. Results showed that the crevices found on the ground surface could be one possible factor for SCC initiation. |
---|---|
ISSN: | 0920-3796 1873-7196 |
DOI: | 10.1016/j.fusengdes.2005.09.065 |