Loading…

A variational approach to some boundary value problems in the half-line

We study the existence of solutions for two kinds of boundary value problem in the interval [0, (infinity) [. The problems are suggested by models in Mathematical Physics. In the first kind of problem the condition at the left endpoint is u(0) = a while in the second kind a homogeneous Neumann condi...

Full description

Saved in:
Bibliographic Details
Published in:Zeitschrift für angewandte Mathematik und Physik 2005-03, Vol.56 (2), p.192-209
Main Authors: Gomes, J. M., Sanchez, L.
Format: Article
Language:English
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c276t-e98c5534bcabd5cd47137b2eb1464b42491703853821b81b8a39b08d881c816f3
cites
container_end_page 209
container_issue 2
container_start_page 192
container_title Zeitschrift für angewandte Mathematik und Physik
container_volume 56
creator Gomes, J. M.
Sanchez, L.
description We study the existence of solutions for two kinds of boundary value problem in the interval [0, (infinity) [. The problems are suggested by models in Mathematical Physics. In the first kind of problem the condition at the left endpoint is u(0) = a while in the second kind a homogeneous Neumann condition u'(0) = 0 is imposed. In both cases solutions should satisfy u(-I-(infinity)) = 0. Our approach is variational, solutions being obtained as minimizers or mountain pass critical points of some functional.
doi_str_mv 10.1007/s00033-004-3095-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29369427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29369427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-e98c5534bcabd5cd47137b2eb1464b42491703853821b81b8a39b08d881c816f3</originalsourceid><addsrcrecordid>eNotkE1LxDAQhoMouK7-AG85eYtOPtokx2XRXWHBi55Dkqa0kjZr0wr7782ywsAc3oeXmQehRwrPFEC-ZADgnAAIwkFX5HSFVlQwIBq4vkarEgjCmKxu0V3O34WWFPgK7Tb41069nfs02ojt8Tgl6zs8J5zTELBLy9jY6VSouARcUhfDkHE_4rkLuLOxJbEfwz26aW3M4eF_r9HX2-vndk8OH7v37eZAPJP1TIJWvqq4cN66pvKNkJRLx4KjohZOMKGpBK4qrhh1qozl2oFqlKJe0brla_R06S2X_Cwhz2bosw8x2jGkJRumea0FkwWkF9BPKecptOY49UP5xFAwZ2XmoswUM-aszJz4HykNXlY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29369427</pqid></control><display><type>article</type><title>A variational approach to some boundary value problems in the half-line</title><source>Springer Link</source><creator>Gomes, J. M. ; Sanchez, L.</creator><creatorcontrib>Gomes, J. M. ; Sanchez, L.</creatorcontrib><description>We study the existence of solutions for two kinds of boundary value problem in the interval [0, (infinity) [. The problems are suggested by models in Mathematical Physics. In the first kind of problem the condition at the left endpoint is u(0) = a while in the second kind a homogeneous Neumann condition u'(0) = 0 is imposed. In both cases solutions should satisfy u(-I-(infinity)) = 0. Our approach is variational, solutions being obtained as minimizers or mountain pass critical points of some functional.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-004-3095-y</identifier><language>eng</language><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2005-03, Vol.56 (2), p.192-209</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c276t-e98c5534bcabd5cd47137b2eb1464b42491703853821b81b8a39b08d881c816f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Gomes, J. M.</creatorcontrib><creatorcontrib>Sanchez, L.</creatorcontrib><title>A variational approach to some boundary value problems in the half-line</title><title>Zeitschrift für angewandte Mathematik und Physik</title><description>We study the existence of solutions for two kinds of boundary value problem in the interval [0, (infinity) [. The problems are suggested by models in Mathematical Physics. In the first kind of problem the condition at the left endpoint is u(0) = a while in the second kind a homogeneous Neumann condition u'(0) = 0 is imposed. In both cases solutions should satisfy u(-I-(infinity)) = 0. Our approach is variational, solutions being obtained as minimizers or mountain pass critical points of some functional.</description><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNotkE1LxDAQhoMouK7-AG85eYtOPtokx2XRXWHBi55Dkqa0kjZr0wr7782ywsAc3oeXmQehRwrPFEC-ZADgnAAIwkFX5HSFVlQwIBq4vkarEgjCmKxu0V3O34WWFPgK7Tb41069nfs02ojt8Tgl6zs8J5zTELBLy9jY6VSouARcUhfDkHE_4rkLuLOxJbEfwz26aW3M4eF_r9HX2-vndk8OH7v37eZAPJP1TIJWvqq4cN66pvKNkJRLx4KjohZOMKGpBK4qrhh1qozl2oFqlKJe0brla_R06S2X_Cwhz2bosw8x2jGkJRumea0FkwWkF9BPKecptOY49UP5xFAwZ2XmoswUM-aszJz4HykNXlY</recordid><startdate>200503</startdate><enddate>200503</enddate><creator>Gomes, J. M.</creator><creator>Sanchez, L.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>200503</creationdate><title>A variational approach to some boundary value problems in the half-line</title><author>Gomes, J. M. ; Sanchez, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-e98c5534bcabd5cd47137b2eb1464b42491703853821b81b8a39b08d881c816f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomes, J. M.</creatorcontrib><creatorcontrib>Sanchez, L.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomes, J. M.</au><au>Sanchez, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A variational approach to some boundary value problems in the half-line</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><date>2005-03</date><risdate>2005</risdate><volume>56</volume><issue>2</issue><spage>192</spage><epage>209</epage><pages>192-209</pages><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>We study the existence of solutions for two kinds of boundary value problem in the interval [0, (infinity) [. The problems are suggested by models in Mathematical Physics. In the first kind of problem the condition at the left endpoint is u(0) = a while in the second kind a homogeneous Neumann condition u'(0) = 0 is imposed. In both cases solutions should satisfy u(-I-(infinity)) = 0. Our approach is variational, solutions being obtained as minimizers or mountain pass critical points of some functional.</abstract><doi>10.1007/s00033-004-3095-y</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0044-2275
ispartof Zeitschrift für angewandte Mathematik und Physik, 2005-03, Vol.56 (2), p.192-209
issn 0044-2275
1420-9039
language eng
recordid cdi_proquest_miscellaneous_29369427
source Springer Link
title A variational approach to some boundary value problems in the half-line
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T03%3A14%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20variational%20approach%20to%20some%20boundary%20value%20problems%20in%20the%20half-line&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Gomes,%20J.%20M.&rft.date=2005-03&rft.volume=56&rft.issue=2&rft.spage=192&rft.epage=209&rft.pages=192-209&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-004-3095-y&rft_dat=%3Cproquest_cross%3E29369427%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c276t-e98c5534bcabd5cd47137b2eb1464b42491703853821b81b8a39b08d881c816f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29369427&rft_id=info:pmid/&rfr_iscdi=true