Loading…
Diurnal hydrological – physicochemical controls and sampling methods for minor and trace elements in an Alpine glacial hydrological system
We present diurnal (i) 0.45 and 0.1 μm pore-size filtered and (ii) operationally defined labile particulate-associated major, minor and trace element concentrations and fluxes in glacial outflow waters draining Haut Glacier d’Arolla, Switzerland. We use speciation modelling (PHREEQCi) and water-susp...
Saved in:
Published in: | Journal of hydrology (Amsterdam) 2007, Vol.332 (1), p.123-143 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present diurnal (i) 0.45 and 0.1
μm pore-size filtered and (ii) operationally defined labile particulate-associated major, minor and trace element concentrations and fluxes in glacial outflow waters draining Haut Glacier d’Arolla, Switzerland. We use speciation modelling (PHREEQCi) and water-suspended sediment interaction experiments are utilised under conditions analogous to the subglacial channellised hydrological system, in order to assess controls on, and the most suitable sampling methods to investigate short-term variations in the mode of major, minor and trace element species export from a glacierised headwater catchment.
0.45
μm pore-size filtered major ions, Sr and U are exported in glacial outflow waters predominately as mobile monovalent or divalent ions or as carbonate complexes, and are controlled by hydrological variations over diurnal cycles, exhibiting an inverse concentration with increasing meltwater discharge. Conversely, 0.45
μm pore-size filtered concentrations of most minor and trace elements (
e.g. Fe, Mn, Co, Ba and Pb) exhibit variations that are not strongly inter-correlated with meltwater discharge or suspended sediment concentrations (SSC) over diurnal periods. The use of 0.45 and 0.1
μm pore-size filter membranes indicates that significant colloidal material is not passing through the 0.45
μm pore-size filters, and these unsystematic variations are not a result of colloid measurement. Speciation modelling applied to meltwaters and observations during water–rock interaction experiments suggest that these unsystematic temporal variations reflect physicochemical controls. This includes sorption, and the oversaturation and precipitation of Fe and Al (oxi)hydroxides, and the co-precipitation of other species. Diurnal pH variations appear important in controlling such short-term physicochemical controls, which limits such species use for hydrological investigations. The percentage of total elemental fluxes exported as the labile particulate-associated flux (%PAF) for each minor and trace element changes dramatically between and during the diurnal cycles, reflecting species-specific sensitivity to hydrological and physicochemical controls.
Hydrological interpretations of hydrochemical data must be made carefully when using chemical determinations by ICP-MS, since we demonstrate that measurements will comprise of any material that passes through the filter. This can lead to higher concentration measurements than if determined by ion |
---|---|
ISSN: | 0022-1694 1879-2707 |
DOI: | 10.1016/j.jhydrol.2006.06.026 |