Loading…

Exceptional Thermoelectric Performance of Cu2(Zn,Fe,Cd)SnS4 Thin Films

High-quality Cu2(Zn,Fe,Cd)­SnS4 (CZFCTS) thin films based on the parent CZTS were prepared by aerosol-assisted chemical vapor deposition (AACVD). Substitution of Zn by Fe and Cd significantly improved the electrical transport properties, and monophasic CZFCTS thin films exhibited a maximum power fac...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2024-03, Vol.16 (9), p.11516-11527
Main Authors: Liu, Yu, McNaughter, Paul D., Liu, Xiaodong, Kretinin, Andrey V., Skelton, Jonathan M., Azough, Feridoon, Lewis, David J., Freer, Robert
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-quality Cu2(Zn,Fe,Cd)­SnS4 (CZFCTS) thin films based on the parent CZTS were prepared by aerosol-assisted chemical vapor deposition (AACVD). Substitution of Zn by Fe and Cd significantly improved the electrical transport properties, and monophasic CZFCTS thin films exhibited a maximum power factor (PF) of ∼0.22 μW cm–1 K–2 at 575 K. The quality and performance of the CZFCTS thin films were further improved by postdeposition annealing. CZFCTS thin films annealed for 24 h showed a significantly enhanced maximum PF of ∼2.4 μW cm–1 K–2 at 575 K. This is higher than all reported values for single-phase quaternary sulfide (Cu2BSnS4, B = Mn, Fe, Co, Ni) thin films and even exceeds the PF for most polycrystalline bulk materials of these sulfides. Density functional theory (DFT) calculations were performed to understand the impact of Cd and Fe substitution on the electronic properties of CZTS. It was predicted that CZFCTS would have a smaller band gap than CZTS and a higher density of states (DoS) near the Fermi level. The thermal conductivity and thermoelectric figure of merit (zT) of the CZFCTS thin films have been evaluated, yielding an estimated maximum zT range of 0.18–0.69 at 550 K. The simple processing route and improved thermoelectric performance make CZFCTS thin films extremely promising for thermoelectric energy generation.
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.3c17730