Loading…

Meso-Porous Alumina Capillary Tube as a Support for High-Temperature Gas Separation Membranes by Novel Pulse Sequential Anodic Oxidation Technique

A meso-porous anodic alumina capillary tube (MAAC) having highly oriented radial meso-pore channels with a minimum diameter of 3 nm has been successfully synthesized using a novel pulse sequential anodic oxidation technique at 100 Hz of pulse frequency. A value resulting in a high channel-pore forma...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials research 2005-01, Vol.20 (1), p.114-120
Main Authors: Inada, Takeshi, Uno, Naoki, Kato, Takeharu, Iwamoto, Yuji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c505t-207667e5b42939b29c7a88f00496b06b04e4424b28eb7704c4231c68412b255c3
cites cdi_FETCH-LOGICAL-c505t-207667e5b42939b29c7a88f00496b06b04e4424b28eb7704c4231c68412b255c3
container_end_page 120
container_issue 1
container_start_page 114
container_title Journal of materials research
container_volume 20
creator Inada, Takeshi
Uno, Naoki
Kato, Takeharu
Iwamoto, Yuji
description A meso-porous anodic alumina capillary tube (MAAC) having highly oriented radial meso-pore channels with a minimum diameter of 3 nm has been successfully synthesized using a novel pulse sequential anodic oxidation technique at 100 Hz of pulse frequency. A value resulting in a high channel-pore formation rate at 1 V of the pulse sequential voltage was determined to be the optimum pulse frequency for the anodization. Transmission electron microscopy observation and N2 sorption analysis revealed that controlling the minimum pore channel diameter at 3 nm was possible by the voltage of 1 V. The gas permeance according to Knudsen’s diffusion mechanism was demonstrated at 500 °C, by evaluating gas permeation properties through the meso-porous anodic alumina capillary tube with radial meso-pore channels with minimum diameter of 3 nm, achieving hydrogen permeance of 1.8 × 10−6 mol/m2 s Pa.
doi_str_mv 10.1557/JMR.2005.0016
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29392391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_JMR_2005_0016</cupid><sourcerecordid>28563799</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-207667e5b42939b29c7a88f00496b06b04e4424b28eb7704c4231c68412b255c3</originalsourceid><addsrcrecordid>eNqN0c9v0zAUB3ALgUTZOHL3iVs62_GP5FgKdKB1K7S77GLZ7uvmkcSZnaDt3-AvxlWncUKqZMmy_PF78vsi9IGSKRVCnX1f_pwyQsSUECpfoQkjnBeiZPI1mpCq4gWrKX-L3qV0n4Ugik_QnyWkUKxCDGPCs2ZsfWfw3PS-aUx8wpvRAjYJG7we-z7EAe9CxOf-9q7YQNtDNMMYAS8yWUNv8tGHDi-htdF0kLB9wpfhNzR4NTYJsnkYoRu8afCsC1vv8NWj3x4ebcDddT7fn6I3O5P1--f9BF1__bKZnxcXV4tv89lF4QQRQ8GIklKBsJzVZW1Z7ZSpqh0hvJaW5MWBc8Ytq8AqRbjjrKROVpwyy4Rw5Qn6eKjbx5DbpkG3PjnIH-8gT0Pvy7KypkdAVhN2DKyELFVdHwM5oSXJsDhAF0NKEXa6j77NyWhK9D50nUPX-9D1PvR_3qcBHl-wib-0VKUSWi5-6E_Lm9VqzS_15-zPnuubHJnf3oK-D2Ps8tz_0-EvJoO9Eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28540130</pqid></control><display><type>article</type><title>Meso-Porous Alumina Capillary Tube as a Support for High-Temperature Gas Separation Membranes by Novel Pulse Sequential Anodic Oxidation Technique</title><source>Springer Link</source><creator>Inada, Takeshi ; Uno, Naoki ; Kato, Takeharu ; Iwamoto, Yuji</creator><creatorcontrib>Inada, Takeshi ; Uno, Naoki ; Kato, Takeharu ; Iwamoto, Yuji</creatorcontrib><description>A meso-porous anodic alumina capillary tube (MAAC) having highly oriented radial meso-pore channels with a minimum diameter of 3 nm has been successfully synthesized using a novel pulse sequential anodic oxidation technique at 100 Hz of pulse frequency. A value resulting in a high channel-pore formation rate at 1 V of the pulse sequential voltage was determined to be the optimum pulse frequency for the anodization. Transmission electron microscopy observation and N2 sorption analysis revealed that controlling the minimum pore channel diameter at 3 nm was possible by the voltage of 1 V. The gas permeance according to Knudsen’s diffusion mechanism was demonstrated at 500 °C, by evaluating gas permeation properties through the meso-porous anodic alumina capillary tube with radial meso-pore channels with minimum diameter of 3 nm, achieving hydrogen permeance of 1.8 × 10−6 mol/m2 s Pa.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/JMR.2005.0016</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Ceramic ; Electrochemical synthesis ; Microstructure</subject><ispartof>Journal of materials research, 2005-01, Vol.20 (1), p.114-120</ispartof><rights>Copyright © Materials Research Society 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-207667e5b42939b29c7a88f00496b06b04e4424b28eb7704c4231c68412b255c3</citedby><cites>FETCH-LOGICAL-c505t-207667e5b42939b29c7a88f00496b06b04e4424b28eb7704c4231c68412b255c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Inada, Takeshi</creatorcontrib><creatorcontrib>Uno, Naoki</creatorcontrib><creatorcontrib>Kato, Takeharu</creatorcontrib><creatorcontrib>Iwamoto, Yuji</creatorcontrib><title>Meso-Porous Alumina Capillary Tube as a Support for High-Temperature Gas Separation Membranes by Novel Pulse Sequential Anodic Oxidation Technique</title><title>Journal of materials research</title><addtitle>J. Mater. Res</addtitle><description>A meso-porous anodic alumina capillary tube (MAAC) having highly oriented radial meso-pore channels with a minimum diameter of 3 nm has been successfully synthesized using a novel pulse sequential anodic oxidation technique at 100 Hz of pulse frequency. A value resulting in a high channel-pore formation rate at 1 V of the pulse sequential voltage was determined to be the optimum pulse frequency for the anodization. Transmission electron microscopy observation and N2 sorption analysis revealed that controlling the minimum pore channel diameter at 3 nm was possible by the voltage of 1 V. The gas permeance according to Knudsen’s diffusion mechanism was demonstrated at 500 °C, by evaluating gas permeation properties through the meso-porous anodic alumina capillary tube with radial meso-pore channels with minimum diameter of 3 nm, achieving hydrogen permeance of 1.8 × 10−6 mol/m2 s Pa.</description><subject>Ceramic</subject><subject>Electrochemical synthesis</subject><subject>Microstructure</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqN0c9v0zAUB3ALgUTZOHL3iVs62_GP5FgKdKB1K7S77GLZ7uvmkcSZnaDt3-AvxlWncUKqZMmy_PF78vsi9IGSKRVCnX1f_pwyQsSUECpfoQkjnBeiZPI1mpCq4gWrKX-L3qV0n4Ugik_QnyWkUKxCDGPCs2ZsfWfw3PS-aUx8wpvRAjYJG7we-z7EAe9CxOf-9q7YQNtDNMMYAS8yWUNv8tGHDi-htdF0kLB9wpfhNzR4NTYJsnkYoRu8afCsC1vv8NWj3x4ebcDddT7fn6I3O5P1--f9BF1__bKZnxcXV4tv89lF4QQRQ8GIklKBsJzVZW1Z7ZSpqh0hvJaW5MWBc8Ytq8AqRbjjrKROVpwyy4Rw5Qn6eKjbx5DbpkG3PjnIH-8gT0Pvy7KypkdAVhN2DKyELFVdHwM5oSXJsDhAF0NKEXa6j77NyWhK9D50nUPX-9D1PvR_3qcBHl-wib-0VKUSWi5-6E_Lm9VqzS_15-zPnuubHJnf3oK-D2Ps8tz_0-EvJoO9Eg</recordid><startdate>200501</startdate><enddate>200501</enddate><creator>Inada, Takeshi</creator><creator>Uno, Naoki</creator><creator>Kato, Takeharu</creator><creator>Iwamoto, Yuji</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7TB</scope><scope>FR3</scope></search><sort><creationdate>200501</creationdate><title>Meso-Porous Alumina Capillary Tube as a Support for High-Temperature Gas Separation Membranes by Novel Pulse Sequential Anodic Oxidation Technique</title><author>Inada, Takeshi ; Uno, Naoki ; Kato, Takeharu ; Iwamoto, Yuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-207667e5b42939b29c7a88f00496b06b04e4424b28eb7704c4231c68412b255c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Ceramic</topic><topic>Electrochemical synthesis</topic><topic>Microstructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Inada, Takeshi</creatorcontrib><creatorcontrib>Uno, Naoki</creatorcontrib><creatorcontrib>Kato, Takeharu</creatorcontrib><creatorcontrib>Iwamoto, Yuji</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Inada, Takeshi</au><au>Uno, Naoki</au><au>Kato, Takeharu</au><au>Iwamoto, Yuji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Meso-Porous Alumina Capillary Tube as a Support for High-Temperature Gas Separation Membranes by Novel Pulse Sequential Anodic Oxidation Technique</atitle><jtitle>Journal of materials research</jtitle><addtitle>J. Mater. Res</addtitle><date>2005-01</date><risdate>2005</risdate><volume>20</volume><issue>1</issue><spage>114</spage><epage>120</epage><pages>114-120</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>A meso-porous anodic alumina capillary tube (MAAC) having highly oriented radial meso-pore channels with a minimum diameter of 3 nm has been successfully synthesized using a novel pulse sequential anodic oxidation technique at 100 Hz of pulse frequency. A value resulting in a high channel-pore formation rate at 1 V of the pulse sequential voltage was determined to be the optimum pulse frequency for the anodization. Transmission electron microscopy observation and N2 sorption analysis revealed that controlling the minimum pore channel diameter at 3 nm was possible by the voltage of 1 V. The gas permeance according to Knudsen’s diffusion mechanism was demonstrated at 500 °C, by evaluating gas permeation properties through the meso-porous anodic alumina capillary tube with radial meso-pore channels with minimum diameter of 3 nm, achieving hydrogen permeance of 1.8 × 10−6 mol/m2 s Pa.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/JMR.2005.0016</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2005-01, Vol.20 (1), p.114-120
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_miscellaneous_29392391
source Springer Link
subjects Ceramic
Electrochemical synthesis
Microstructure
title Meso-Porous Alumina Capillary Tube as a Support for High-Temperature Gas Separation Membranes by Novel Pulse Sequential Anodic Oxidation Technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A47%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Meso-Porous%20Alumina%20Capillary%20Tube%20as%20a%20Support%20for%20High-Temperature%20Gas%20Separation%20Membranes%20by%20Novel%20Pulse%20Sequential%20Anodic%20Oxidation%20Technique&rft.jtitle=Journal%20of%20materials%20research&rft.au=Inada,%20Takeshi&rft.date=2005-01&rft.volume=20&rft.issue=1&rft.spage=114&rft.epage=120&rft.pages=114-120&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/JMR.2005.0016&rft_dat=%3Cproquest_cross%3E28563799%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c505t-207667e5b42939b29c7a88f00496b06b04e4424b28eb7704c4231c68412b255c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28540130&rft_id=info:pmid/&rft_cupid=10_1557_JMR_2005_0016&rfr_iscdi=true