Loading…

Nuclear analyses for two “look-alike” helium-cooled pebble bed test blanket sub-modules proposed by the US for testing in ITER

The US is proposing two “look-alike” sub-modules, based on helium-cooled pebble bed (HCPB) ceramic breeder, to be tested in the same test blanket module (TBM) that will occupy a quarter of a port in ITER and placed next to the Japanese TBM. The TBM has a toroidal width of 73 cm, a radial depth of 60...

Full description

Saved in:
Bibliographic Details
Published in:Fusion engineering and design 2006-02, Vol.81 (8), p.1567-1576
Main Authors: Youssef, M.Z., Sawan, M.E., Ying, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The US is proposing two “look-alike” sub-modules, based on helium-cooled pebble bed (HCPB) ceramic breeder, to be tested in the same test blanket module (TBM) that will occupy a quarter of a port in ITER and placed next to the Japanese TBM. The TBM has a toroidal width of 73 cm, a radial depth of 60 cm and a poloidal height of 91 cm. The ceramic breeder is made of Li 4SiO 4 with 75% Li-6 enrichment (60% packing factor) and beryllium is used as the multiplier. The two sub-modules are arranged in two configurations, namely a layered configuration and an edge-on configuration. In the present work, we analyze these two sub-modules using two-dimensional discrete ordinates transport codes in R-θ model that accounts for the presence of the ITER shielding blanket and the surrounding frame of the port. The objectives are: (1) to examine the profiles of heating and tritium production rates in the two sub-modules, both in the radial and toroidal direction, in order to identify locations where neutronics measurements can be best performed with least perturbation from the surroundings, (2) to provide both local and integrated values for nuclear heating rates required for subsequent thermo-mechanics analysis, and (3) to compare the tritium production capabilities of two variants for the HCPB blanket concept, mainly the parallel and the edge-on configurations. We present the main findings from this study in this paper.
ISSN:0920-3796
1873-7196
DOI:10.1016/j.fusengdes.2005.08.102