Loading…
Integer arithmetic
The work which forms the basis for this article had its genesis in The Theory of Thermodynamics , by J. R. Waldram (Cambridge University Press, 1985). Mr. Waldram, rather than building upon the differential laws of thermodynamics (entropy, energy, etc.), states a fundamental relationship from which...
Saved in:
Published in: | SIGSMALL/PC notes 1989-05, Vol.15 (2), p.7-11 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 11 |
container_issue | 2 |
container_start_page | 7 |
container_title | SIGSMALL/PC notes |
container_volume | 15 |
creator | Hodge, H K |
description | The work which forms the basis for this article had its genesis in
The Theory of Thermodynamics
, by J. R. Waldram (Cambridge University Press, 1985). Mr. Waldram, rather than building upon the differential laws of thermodynamics (entropy, energy, etc.), states a fundamental relationship from which he will construct said laws:[EQUATION]This represents the number of ways in which Q identical quanta can be distributed amoung N oscillators; that is, the number of states in which such a collection can be. |
doi_str_mv | 10.1145/66276.66278 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29412433</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29412433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c673-f619eab6beeea04326db4682df86506066727f0adec92dcd9ca8e05f0080ccf43</originalsourceid><addsrcrecordid>eNotjztPwzAURj0UiVJY6B_oxIJSrh-5tkdU8ahUiaW75djXkCppip0O_Htoy3K-5eiTDmNzDkvOVf2EKDQuTzQTNgVjZSWMrq_ZTSk7AG64tlN2v96P9El54XM7fvU0tuGWXSXfFbr73xnbvr5sV-_V5uNtvXreVAG1rBJyS77Bhog8KCkwNgqNiMlgDQiIWugEPlKwIoZogzcEdQIwEEJScsYeLreHPHwfqYyub0ugrvN7Go7FCau4UFL-iY8XMeShlEzJHXLb-_zjOLhTqjunnmnkLzpBRpo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29412433</pqid></control><display><type>article</type><title>Integer arithmetic</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Hodge, H K</creator><contributor>Hodge, H. K.</contributor><creatorcontrib>Hodge, H K ; Hodge, H. K.</creatorcontrib><description>The work which forms the basis for this article had its genesis in
The Theory of Thermodynamics
, by J. R. Waldram (Cambridge University Press, 1985). Mr. Waldram, rather than building upon the differential laws of thermodynamics (entropy, energy, etc.), states a fundamental relationship from which he will construct said laws:[EQUATION]This represents the number of ways in which Q identical quanta can be distributed amoung N oscillators; that is, the number of states in which such a collection can be.</description><identifier>ISSN: 0893-2875</identifier><identifier>DOI: 10.1145/66276.66278</identifier><language>eng</language><ispartof>SIGSMALL/PC notes, 1989-05, Vol.15 (2), p.7-11</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><contributor>Hodge, H. K.</contributor><creatorcontrib>Hodge, H K</creatorcontrib><title>Integer arithmetic</title><title>SIGSMALL/PC notes</title><description>The work which forms the basis for this article had its genesis in
The Theory of Thermodynamics
, by J. R. Waldram (Cambridge University Press, 1985). Mr. Waldram, rather than building upon the differential laws of thermodynamics (entropy, energy, etc.), states a fundamental relationship from which he will construct said laws:[EQUATION]This represents the number of ways in which Q identical quanta can be distributed amoung N oscillators; that is, the number of states in which such a collection can be.</description><issn>0893-2875</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNotjztPwzAURj0UiVJY6B_oxIJSrh-5tkdU8ahUiaW75djXkCppip0O_Htoy3K-5eiTDmNzDkvOVf2EKDQuTzQTNgVjZSWMrq_ZTSk7AG64tlN2v96P9El54XM7fvU0tuGWXSXfFbr73xnbvr5sV-_V5uNtvXreVAG1rBJyS77Bhog8KCkwNgqNiMlgDQiIWugEPlKwIoZogzcEdQIwEEJScsYeLreHPHwfqYyub0ugrvN7Go7FCau4UFL-iY8XMeShlEzJHXLb-_zjOLhTqjunnmnkLzpBRpo</recordid><startdate>198905</startdate><enddate>198905</enddate><creator>Hodge, H K</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>198905</creationdate><title>Integer arithmetic</title><author>Hodge, H K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c673-f619eab6beeea04326db4682df86506066727f0adec92dcd9ca8e05f0080ccf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Hodge, H K</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>SIGSMALL/PC notes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hodge, H K</au><au>Hodge, H. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integer arithmetic</atitle><jtitle>SIGSMALL/PC notes</jtitle><date>1989-05</date><risdate>1989</risdate><volume>15</volume><issue>2</issue><spage>7</spage><epage>11</epage><pages>7-11</pages><issn>0893-2875</issn><abstract>The work which forms the basis for this article had its genesis in
The Theory of Thermodynamics
, by J. R. Waldram (Cambridge University Press, 1985). Mr. Waldram, rather than building upon the differential laws of thermodynamics (entropy, energy, etc.), states a fundamental relationship from which he will construct said laws:[EQUATION]This represents the number of ways in which Q identical quanta can be distributed amoung N oscillators; that is, the number of states in which such a collection can be.</abstract><doi>10.1145/66276.66278</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-2875 |
ispartof | SIGSMALL/PC notes, 1989-05, Vol.15 (2), p.7-11 |
issn | 0893-2875 |
language | eng |
recordid | cdi_proquest_miscellaneous_29412433 |
source | Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
title | Integer arithmetic |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integer%20arithmetic&rft.jtitle=SIGSMALL/PC%20notes&rft.au=Hodge,%20H%20K&rft.date=1989-05&rft.volume=15&rft.issue=2&rft.spage=7&rft.epage=11&rft.pages=7-11&rft.issn=0893-2875&rft_id=info:doi/10.1145/66276.66278&rft_dat=%3Cproquest_cross%3E29412433%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c673-f619eab6beeea04326db4682df86506066727f0adec92dcd9ca8e05f0080ccf43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29412433&rft_id=info:pmid/&rfr_iscdi=true |