Loading…

A nonlocal boundary value problem with singularities in phase variables

The singular differential equation (g(χ′))′ = ƒ(t, χ, χ′) together with the nonlocal boundary conditions χ(0) = χ(T) = −, γ min {χ(t) : t ∈ [0,T]} is considered. Here g ∈ C 0(ℝ) is an increasing and odd function, positive ƒ satisfying the local Carathéodory conditions on [0, T] × (ℝ s0}) su2 may be...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical and computer modelling 2004-07, Vol.40 (1), p.101-116
Main Author: STANEK, S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c399t-980397443d37bc3526f7394443586cb74fd8c09595734e6f9500a9c53f345afb3
cites cdi_FETCH-LOGICAL-c399t-980397443d37bc3526f7394443586cb74fd8c09595734e6f9500a9c53f345afb3
container_end_page 116
container_issue 1
container_start_page 101
container_title Mathematical and computer modelling
container_volume 40
creator STANEK, S
description The singular differential equation (g(χ′))′ = ƒ(t, χ, χ′) together with the nonlocal boundary conditions χ(0) = χ(T) = −, γ min {χ(t) : t ∈ [0,T]} is considered. Here g ∈ C 0(ℝ) is an increasing and odd function, positive ƒ satisfying the local Carathéodory conditions on [0, T] × (ℝ s0}) su2 may be singular at the value 0 in all its phase variables and γ ∈ (o, ∞). The existence result for the above boundary value problem is proved by the regularization and sequential techniques. Proofs use the topological transversality principle and the Vitali's convergent theorem.
doi_str_mv 10.1016/j.mcm.2003.11.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29414831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895717704802462</els_id><sourcerecordid>29414831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-980397443d37bc3526f7394443586cb74fd8c09595734e6f9500a9c53f345afb3</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWKs_wFsuets12SSbDZ5K0SoUvOg5ZLOJTclma7Jb8d-b0oI3Tw-G772ZeQDcYlRihOuHbdnrvqwQIiXGZZYzMMMNrwpBuTgHM9QIVnDM-SW4SmmLEGICNTOwWsAwBD9o5WE7TKFT8QfulZ8M3MWh9aaH327cwOTC5-RVdKMzCboAdxuVTCajU5lK1-DCKp_MzUnn4OP56X35UqzfVq_LxbrQRIixEA0iglNKOsJbTVhVW04EzQPW1Lrl1HaNRoIJxgk1tRUMISU0I5ZQpmxL5uD-mJuv-5pMGmXvkjbeq2CGKclKUEwbgjOIj6COQ0rRWLmLrs_fSYzkoTK5lbkyeahMYiyzZM_dKVylXIiNKmiX_ow1xowKlrnHI2fyp3tnokzamaBN56LRo-wG98-WX6PGgBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29414831</pqid></control><display><type>article</type><title>A nonlocal boundary value problem with singularities in phase variables</title><source>ScienceDirect Freedom Collection</source><creator>STANEK, S</creator><creatorcontrib>STANEK, S</creatorcontrib><description>The singular differential equation (g(χ′))′ = ƒ(t, χ, χ′) together with the nonlocal boundary conditions χ(0) = χ(T) = −, γ min {χ(t) : t ∈ [0,T]} is considered. Here g ∈ C 0(ℝ) is an increasing and odd function, positive ƒ satisfying the local Carathéodory conditions on [0, T] × (ℝ s0}) su2 may be singular at the value 0 in all its phase variables and γ ∈ (o, ∞). The existence result for the above boundary value problem is proved by the regularization and sequential techniques. Proofs use the topological transversality principle and the Vitali's convergent theorem.</description><identifier>ISSN: 0895-7177</identifier><identifier>EISSN: 1872-9479</identifier><identifier>DOI: 10.1016/j.mcm.2003.11.003</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Exact sciences and technology ; Mathematical analysis ; Mathematics ; Methods of scientific computing (including symbolic computation, algebraic computation) ; Nonlocal boundary condition ; Numerical analysis. Scientific computation ; Ordinary differential equations ; Sciences and techniques of general use ; Second-order differential equation ; Singular boundary value problem ; Topological transversality principle ; Vitali's convergence theorem</subject><ispartof>Mathematical and computer modelling, 2004-07, Vol.40 (1), p.101-116</ispartof><rights>2004 Elsevier Ltd.</rights><rights>2004 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-980397443d37bc3526f7394443586cb74fd8c09595734e6f9500a9c53f345afb3</citedby><cites>FETCH-LOGICAL-c399t-980397443d37bc3526f7394443586cb74fd8c09595734e6f9500a9c53f345afb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16115495$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>STANEK, S</creatorcontrib><title>A nonlocal boundary value problem with singularities in phase variables</title><title>Mathematical and computer modelling</title><description>The singular differential equation (g(χ′))′ = ƒ(t, χ, χ′) together with the nonlocal boundary conditions χ(0) = χ(T) = −, γ min {χ(t) : t ∈ [0,T]} is considered. Here g ∈ C 0(ℝ) is an increasing and odd function, positive ƒ satisfying the local Carathéodory conditions on [0, T] × (ℝ s0}) su2 may be singular at the value 0 in all its phase variables and γ ∈ (o, ∞). The existence result for the above boundary value problem is proved by the regularization and sequential techniques. Proofs use the topological transversality principle and the Vitali's convergent theorem.</description><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Methods of scientific computing (including symbolic computation, algebraic computation)</subject><subject>Nonlocal boundary condition</subject><subject>Numerical analysis. Scientific computation</subject><subject>Ordinary differential equations</subject><subject>Sciences and techniques of general use</subject><subject>Second-order differential equation</subject><subject>Singular boundary value problem</subject><subject>Topological transversality principle</subject><subject>Vitali's convergence theorem</subject><issn>0895-7177</issn><issn>1872-9479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWKs_wFsuets12SSbDZ5K0SoUvOg5ZLOJTclma7Jb8d-b0oI3Tw-G772ZeQDcYlRihOuHbdnrvqwQIiXGZZYzMMMNrwpBuTgHM9QIVnDM-SW4SmmLEGICNTOwWsAwBD9o5WE7TKFT8QfulZ8M3MWh9aaH327cwOTC5-RVdKMzCboAdxuVTCajU5lK1-DCKp_MzUnn4OP56X35UqzfVq_LxbrQRIixEA0iglNKOsJbTVhVW04EzQPW1Lrl1HaNRoIJxgk1tRUMISU0I5ZQpmxL5uD-mJuv-5pMGmXvkjbeq2CGKclKUEwbgjOIj6COQ0rRWLmLrs_fSYzkoTK5lbkyeahMYiyzZM_dKVylXIiNKmiX_ow1xowKlrnHI2fyp3tnokzamaBN56LRo-wG98-WX6PGgBA</recordid><startdate>20040701</startdate><enddate>20040701</enddate><creator>STANEK, S</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20040701</creationdate><title>A nonlocal boundary value problem with singularities in phase variables</title><author>STANEK, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-980397443d37bc3526f7394443586cb74fd8c09595734e6f9500a9c53f345afb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Methods of scientific computing (including symbolic computation, algebraic computation)</topic><topic>Nonlocal boundary condition</topic><topic>Numerical analysis. Scientific computation</topic><topic>Ordinary differential equations</topic><topic>Sciences and techniques of general use</topic><topic>Second-order differential equation</topic><topic>Singular boundary value problem</topic><topic>Topological transversality principle</topic><topic>Vitali's convergence theorem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>STANEK, S</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical and computer modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>STANEK, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nonlocal boundary value problem with singularities in phase variables</atitle><jtitle>Mathematical and computer modelling</jtitle><date>2004-07-01</date><risdate>2004</risdate><volume>40</volume><issue>1</issue><spage>101</spage><epage>116</epage><pages>101-116</pages><issn>0895-7177</issn><eissn>1872-9479</eissn><abstract>The singular differential equation (g(χ′))′ = ƒ(t, χ, χ′) together with the nonlocal boundary conditions χ(0) = χ(T) = −, γ min {χ(t) : t ∈ [0,T]} is considered. Here g ∈ C 0(ℝ) is an increasing and odd function, positive ƒ satisfying the local Carathéodory conditions on [0, T] × (ℝ s0}) su2 may be singular at the value 0 in all its phase variables and γ ∈ (o, ∞). The existence result for the above boundary value problem is proved by the regularization and sequential techniques. Proofs use the topological transversality principle and the Vitali's convergent theorem.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.mcm.2003.11.003</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0895-7177
ispartof Mathematical and computer modelling, 2004-07, Vol.40 (1), p.101-116
issn 0895-7177
1872-9479
language eng
recordid cdi_proquest_miscellaneous_29414831
source ScienceDirect Freedom Collection
subjects Exact sciences and technology
Mathematical analysis
Mathematics
Methods of scientific computing (including symbolic computation, algebraic computation)
Nonlocal boundary condition
Numerical analysis. Scientific computation
Ordinary differential equations
Sciences and techniques of general use
Second-order differential equation
Singular boundary value problem
Topological transversality principle
Vitali's convergence theorem
title A nonlocal boundary value problem with singularities in phase variables
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nonlocal%20boundary%20value%20problem%20with%20singularities%20in%20phase%20variables&rft.jtitle=Mathematical%20and%20computer%20modelling&rft.au=STANEK,%20S&rft.date=2004-07-01&rft.volume=40&rft.issue=1&rft.spage=101&rft.epage=116&rft.pages=101-116&rft.issn=0895-7177&rft.eissn=1872-9479&rft_id=info:doi/10.1016/j.mcm.2003.11.003&rft_dat=%3Cproquest_cross%3E29414831%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-980397443d37bc3526f7394443586cb74fd8c09595734e6f9500a9c53f345afb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29414831&rft_id=info:pmid/&rfr_iscdi=true