Loading…

New Methodologies for True Orthophoto Generation

Orthophoto production aims at the elimination of sensor tilt and terrain relief effects from captured perspective imagery. Uniform scale and the absence of relief displacement in orthophotos make them an important component of GIS databases, where the user can directly determine geographic locations...

Full description

Saved in:
Bibliographic Details
Published in:Photogrammetric engineering and remote sensing 2007-01, Vol.73 (1), p.25-36
Main Authors: Habib, Ayman F., Kim, Eui-Myoung, Kim, Chang-Jae
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Orthophoto production aims at the elimination of sensor tilt and terrain relief effects from captured perspective imagery. Uniform scale and the absence of relief displacement in orthophotos make them an important component of GIS databases, where the user can directly determine geographic locations, measure distances, compute areas, and derive other useful information about the area in question. Differential rectification has been traditionally used for orthophoto generation. For large scale imagery over urban areas, differential rectification produces serious artifacts in the form of double mapped areas at object space locations with sudden relief variations, e.g., in the vicinity of buildings. Such artifacts are removed through true orthophoto generation methodologies which are based on the identification of occluded portions of the object space in the involved imagery. Existing methodologies suffer from several problems such as their sensitivity to the sampling interval of the digital surface model (DSM) as it relates to the ground sampling distance (GSD) of the imaging sensor. Moreover, current methodologies rely on the availability of a digital building model (DBM), which requires an additional and expensive pre-processing. This paper presents new methodologies for true orthophoto generation while circumventing the problems associated with existing techniques. The feasibility and performance of the suggested techniques are verified through experimental results with simulated and real data.
ISSN:0099-1112
2374-8079
DOI:10.14358/PERS.73.1.25