Loading…
An integrated modeling mechanism for optimizing the simulation model of the construction operation
A planner may use the discrete-event simulation to analyze and design the construction operation process that optimizes the overall performance of a construction system. Normally, the basic elements used in construction operation process simulation system, such as CYCLONE (CYCLic Operation NEtworks)...
Saved in:
Published in: | Automation in construction 2006-05, Vol.15 (3), p.327-340 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A planner may use the discrete-event simulation to analyze and design the construction operation process that optimizes the overall performance of a construction system. Normally, the basic elements used in construction operation process simulation system, such as CYCLONE (CYCLic Operation NEtworks), are “activity” and “queue.” Activity is used to model the task which consumes resources and takes time to perform. Queue acts as a storage location for resources entering an idle state. In the simulation system, queues have to be created according to the ways of assigning resources to activities. Conventionally, planner defines queues according to his/her judgment by determining which and what amount of resources should be allocated to which activity. Consequently, various modeling schemes have to be examined to obtain the best simulation model. However, such a process of creating queues and activities is time consuming and requires iterations. This paper introduces a Genetic Algorithms (GA)-based modeling mechanism to automate the process of selecting the optimal modeling scheme. Case study shows that this new modeling mechanism along with the implemented computer program not only can ease the process of developing the optimal resource combination but also improve the system performance of the simulation model. |
---|---|
ISSN: | 0926-5805 1872-7891 |
DOI: | 10.1016/j.autcon.2005.06.016 |