Loading…
Nanostructured gold surfaces as reproducible substrates for surface-enhanced Raman spectroscopy
Raman spectroscopy is a common tool for the qualitative and quantitative chemical analysis of molecules. Although the unique identification of molecules is possible via their vibrational lines, high concentrations (mmol/l) are needed for their nonresonant excitation owing to their low scattering cro...
Saved in:
Published in: | Journal of Raman spectroscopy 2007-03, Vol.38 (3), p.277-282 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Raman spectroscopy is a common tool for the qualitative and quantitative chemical analysis of molecules. Although the unique identification of molecules is possible via their vibrational lines, high concentrations (mmol/l) are needed for their nonresonant excitation owing to their low scattering cross section. The intensity of the Raman spectra is amplified by the use of the surface‐enhanced Raman scattering (SERS) technique. While the use of silver sols results only in a limited reproducibility of the Raman line intensities, lithographically designed, nanostructured gold surfaces used as SERS‐active substrates should, in principle, combine the high sensitivity with better reproducibility. For this purpose, we have produced gratings of gold dots on Si(001) surfaces by means of electron beam lithography. Qualitative and quantitative investigations of crystal violet (CV) performed using nanostructured surfaces give high reproducibility and enhancement of the Raman lines. The substrates are reusable after cleaning; all results presented could be obtained from a single SERS substrate. For the experiments very low laser powers were used. Copyright © 2006 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0377-0486 1097-4555 |
DOI: | 10.1002/jrs.1639 |