Loading…
Effect of Mg on Surface Roughness and Protein Content of Protein-Apatite Composite Layers
Fibronectin (FN)-apatite composite layers were formed on a hydroxyapatite (HAP) ceramic using supersaturated calcium phosphate (CP) solutions. The surface roughness of the composite layer could be controllable by changing the magnesium (Mg) concentration in the CP solution. The higher the Mg concent...
Saved in:
Published in: | Key engineering materials 2006-05, Vol.309-311, p.85-88 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fibronectin (FN)-apatite composite layers were formed on a hydroxyapatite (HAP) ceramic using supersaturated calcium phosphate (CP) solutions. The surface roughness of the composite layer could be controllable by changing the magnesium (Mg) concentration in the CP solution. The higher the Mg concentration, the smaller the apatite crystals in the layer were. The
thickness of the layer formed in the CP solution containing 1.5 mM Mg decreased to 68% that formed in the Mg-free CP solution. The amount of FN immobilized in the layer was almost constant regardless of Mg concentration in the CP solution in the range from 0 to 1.5 mM. The results of the present study revealed that a thin FN-apatite composite layer with a smooth surface and a high protein content is formed in a CP solution at a Mg concentration of 1.5 mM. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.309-311.85 |