Loading…

Incoming longwave radiation to melting snow: observations, sensitivity and estimation in Northern environments

At high latitudes, longwave radiation can provide similar, or higher, amounts of energy to snow than shortwave radiation due to the low solar elevation (cosine effect and increased scattering due to long atmospheric path lengths). This effect is magnified in mountains due to shading and longwave emi...

Full description

Saved in:
Bibliographic Details
Published in:Hydrological processes 2006-11, Vol.20 (17), p.3697-3708
Main Authors: Sicart, J. E., Pomeroy, J. W., Essery, R. L. H., Bewley, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:At high latitudes, longwave radiation can provide similar, or higher, amounts of energy to snow than shortwave radiation due to the low solar elevation (cosine effect and increased scattering due to long atmospheric path lengths). This effect is magnified in mountains due to shading and longwave emissions from the complex topography. This study examines longwave irradiance at the snow surface in the Wolf Creek Research Basin, Yukon Territory, Canada (60° 36′N, 134° 57′W) during the springs of 2002 and 2004. Incoming longwave radiation was estimated from standard meteorological measurements by segregating radiation sources into clear sky, clouds and surrounding terrain. A sensitivity study was conducted to detect the atmospheric and topographic conditions under which emission from adjacent terrain significantly increases the longwave irradiance. The total incoming longwave radiation is more sensitive to sky view factor than to the temperature of the emitting terrain surfaces. Brutsaert's equation correctly simulates the clear‐sky irradiance for hourly time steps using temperature and humidity. Longwave emissions from clouds, which raised longwave radiation above that from clear skies by 16% on average, were best estimated using daily atmospheric shortwave transmissivity and hourly relative humidity. An independent test of the estimation procedure for a prairie site near Saskatoon, Saskatchewan, Canada, indicated that the calculations are robust in late winter and spring conditions. Copyright © 2006 John Wiley & Sons, Ltd.
ISSN:0885-6087
1099-1085
DOI:10.1002/hyp.6383