Loading…

Optimizing Intermediate Adsorption over PdM (M=Fe, Co, Ni, Cu) Bimetallene for Boosted Nitrate Electroreduction to Ammonia

Electrochemical reduction of nitrate to ammonia (NO3RR) is a promising and eco‐friendly strategy for ammonia production. However, the sluggish kinetics of the eight‐electron transfer process and poor mechanistic understanding strongly impedes its application. To unveil the internal laws, herein, a l...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2024-04, Vol.63 (18), p.e202319029-n/a
Main Authors: Zhou, Yuanbo, Zhang, Lifang, Zhu, Zebin, Wang, Mengfan, Li, Najun, Qian, Tao, Yan, Chenglin, Lu, Jianmei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c3289-c474dcaf9045b6d118273f8bf43dd7838aa3e33272a35ed76ba8fe9d6ae43ee73
container_end_page n/a
container_issue 18
container_start_page e202319029
container_title Angewandte Chemie International Edition
container_volume 63
creator Zhou, Yuanbo
Zhang, Lifang
Zhu, Zebin
Wang, Mengfan
Li, Najun
Qian, Tao
Yan, Chenglin
Lu, Jianmei
description Electrochemical reduction of nitrate to ammonia (NO3RR) is a promising and eco‐friendly strategy for ammonia production. However, the sluggish kinetics of the eight‐electron transfer process and poor mechanistic understanding strongly impedes its application. To unveil the internal laws, herein, a library of Pd‐based bimetallene with various transition metal dopants (PdM (M=Fe, Co, Ni, Cu)) are screened to learn their structure–activity relationship towards NO3RR. The ultra‐thin structure of metallene greatly facilitates the exposure of active sites, and the transition metals dopants break the electronic balance and upshift its d‐band center, thus optimizing intermediates adsorption. The anisotropic electronic characteristics of these transition metals make the NO3RR activity in the order of PdCu>PdCo≈PdFe>PdNi>Pd, and a record‐high NH3 yield rate of 295 mg h−1 mgcat−1 along with Faradaic efficiency of 90.9 % is achieved in neutral electrolyte on PdCu bimetallene. Detailed studies further reveal that the moderate N‐species (*NO3 and *NO2) adsorption ability, enhanced *NO activation, and reduced HER activity facilitate the NH3 production. We believe our results will give a systematic guidance to the future design of NO3RR catalysts. In this work, a library of Pd‐based bimetallene with various transition metal dopants (PdM (M=Fe, Co, Ni, Cu)) are screened to learn their structure–activity relationship towards NO3RR. The ultra‐thin structure of metallene greatly facilitates the exposure of active sites, and the transition metals dopants play a key role in precisely tuning the electronic state and optimizing intermediates adsorption, thus facilitating nitrate reduction to ammonia.
doi_str_mv 10.1002/anie.202319029
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_2942185993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3040490408</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3289-c474dcaf9045b6d118273f8bf43dd7838aa3e33272a35ed76ba8fe9d6ae43ee73</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EoqXlyhFZ4lKkbrA93qx94JBGaYnUrwOcLWc9i1ztroPtBbW_HqcpReLCaUaaZx6N5iXkHWczzpj4ZEePM8EEcM2EfkEOeS14BU0DL0svAapG1fyAvEnprvBKsflrcgBKSs2UPCQPN9vsB__gx-90PWaMAzpvM9KFSyGWWRhp-ImR3rorenL1-RxP6TKc0mtf6vSRnvkBs-17HJF2IdKzEFJGV-Y57jSrHtscQ0Q3tY-yHOhiGMLo7TF51dk-4dunekS-na--Lr9UlzcX6-XismpBKF21spGutZ1mst7MHedKNNCpTSfBuUaBshYQQDTCQo2umW-s6lC7uUUJiA0ckZO9dxvDjwlTNoNPLfa9HTFMyQgtBVe11lDQD_-gd2GKY7nOAJOs_EwyVajZnmpjSCliZ7bRDzbeG87MLhWzS8U8p1IW3j9pp0357zP-J4YC6D3wy_d4_x-dWVyvV3_lvwGuPJiA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3040490408</pqid></control><display><type>article</type><title>Optimizing Intermediate Adsorption over PdM (M=Fe, Co, Ni, Cu) Bimetallene for Boosted Nitrate Electroreduction to Ammonia</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><creator>Zhou, Yuanbo ; Zhang, Lifang ; Zhu, Zebin ; Wang, Mengfan ; Li, Najun ; Qian, Tao ; Yan, Chenglin ; Lu, Jianmei</creator><creatorcontrib>Zhou, Yuanbo ; Zhang, Lifang ; Zhu, Zebin ; Wang, Mengfan ; Li, Najun ; Qian, Tao ; Yan, Chenglin ; Lu, Jianmei</creatorcontrib><description>Electrochemical reduction of nitrate to ammonia (NO3RR) is a promising and eco‐friendly strategy for ammonia production. However, the sluggish kinetics of the eight‐electron transfer process and poor mechanistic understanding strongly impedes its application. To unveil the internal laws, herein, a library of Pd‐based bimetallene with various transition metal dopants (PdM (M=Fe, Co, Ni, Cu)) are screened to learn their structure–activity relationship towards NO3RR. The ultra‐thin structure of metallene greatly facilitates the exposure of active sites, and the transition metals dopants break the electronic balance and upshift its d‐band center, thus optimizing intermediates adsorption. The anisotropic electronic characteristics of these transition metals make the NO3RR activity in the order of PdCu&gt;PdCo≈PdFe&gt;PdNi&gt;Pd, and a record‐high NH3 yield rate of 295 mg h−1 mgcat−1 along with Faradaic efficiency of 90.9 % is achieved in neutral electrolyte on PdCu bimetallene. Detailed studies further reveal that the moderate N‐species (*NO3 and *NO2) adsorption ability, enhanced *NO activation, and reduced HER activity facilitate the NH3 production. We believe our results will give a systematic guidance to the future design of NO3RR catalysts. In this work, a library of Pd‐based bimetallene with various transition metal dopants (PdM (M=Fe, Co, Ni, Cu)) are screened to learn their structure–activity relationship towards NO3RR. The ultra‐thin structure of metallene greatly facilitates the exposure of active sites, and the transition metals dopants play a key role in precisely tuning the electronic state and optimizing intermediates adsorption, thus facilitating nitrate reduction to ammonia.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202319029</identifier><identifier>PMID: 38449084</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Adsorption ; Ammonia ; ammonia production ; bimetal ; Bimetals ; Catalysts ; Chemical reduction ; Cobalt ; Copper ; Dopants ; electrochemical nitrate reduction ; Electrochemistry ; Electron transfer ; Intermediates ; Iron ; metallene ; Nickel ; Nitrates ; Nitrogen dioxide ; Palladium ; structure–activity relationship ; Transition metals</subject><ispartof>Angewandte Chemie International Edition, 2024-04, Vol.63 (18), p.e202319029-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3289-c474dcaf9045b6d118273f8bf43dd7838aa3e33272a35ed76ba8fe9d6ae43ee73</cites><orcidid>0000-0003-4467-9441</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38449084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Yuanbo</creatorcontrib><creatorcontrib>Zhang, Lifang</creatorcontrib><creatorcontrib>Zhu, Zebin</creatorcontrib><creatorcontrib>Wang, Mengfan</creatorcontrib><creatorcontrib>Li, Najun</creatorcontrib><creatorcontrib>Qian, Tao</creatorcontrib><creatorcontrib>Yan, Chenglin</creatorcontrib><creatorcontrib>Lu, Jianmei</creatorcontrib><title>Optimizing Intermediate Adsorption over PdM (M=Fe, Co, Ni, Cu) Bimetallene for Boosted Nitrate Electroreduction to Ammonia</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Electrochemical reduction of nitrate to ammonia (NO3RR) is a promising and eco‐friendly strategy for ammonia production. However, the sluggish kinetics of the eight‐electron transfer process and poor mechanistic understanding strongly impedes its application. To unveil the internal laws, herein, a library of Pd‐based bimetallene with various transition metal dopants (PdM (M=Fe, Co, Ni, Cu)) are screened to learn their structure–activity relationship towards NO3RR. The ultra‐thin structure of metallene greatly facilitates the exposure of active sites, and the transition metals dopants break the electronic balance and upshift its d‐band center, thus optimizing intermediates adsorption. The anisotropic electronic characteristics of these transition metals make the NO3RR activity in the order of PdCu&gt;PdCo≈PdFe&gt;PdNi&gt;Pd, and a record‐high NH3 yield rate of 295 mg h−1 mgcat−1 along with Faradaic efficiency of 90.9 % is achieved in neutral electrolyte on PdCu bimetallene. Detailed studies further reveal that the moderate N‐species (*NO3 and *NO2) adsorption ability, enhanced *NO activation, and reduced HER activity facilitate the NH3 production. We believe our results will give a systematic guidance to the future design of NO3RR catalysts. In this work, a library of Pd‐based bimetallene with various transition metal dopants (PdM (M=Fe, Co, Ni, Cu)) are screened to learn their structure–activity relationship towards NO3RR. The ultra‐thin structure of metallene greatly facilitates the exposure of active sites, and the transition metals dopants play a key role in precisely tuning the electronic state and optimizing intermediates adsorption, thus facilitating nitrate reduction to ammonia.</description><subject>Adsorption</subject><subject>Ammonia</subject><subject>ammonia production</subject><subject>bimetal</subject><subject>Bimetals</subject><subject>Catalysts</subject><subject>Chemical reduction</subject><subject>Cobalt</subject><subject>Copper</subject><subject>Dopants</subject><subject>electrochemical nitrate reduction</subject><subject>Electrochemistry</subject><subject>Electron transfer</subject><subject>Intermediates</subject><subject>Iron</subject><subject>metallene</subject><subject>Nickel</subject><subject>Nitrates</subject><subject>Nitrogen dioxide</subject><subject>Palladium</subject><subject>structure–activity relationship</subject><subject>Transition metals</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkU1vEzEQhi0EoqXlyhFZ4lKkbrA93qx94JBGaYnUrwOcLWc9i1ztroPtBbW_HqcpReLCaUaaZx6N5iXkHWczzpj4ZEePM8EEcM2EfkEOeS14BU0DL0svAapG1fyAvEnprvBKsflrcgBKSs2UPCQPN9vsB__gx-90PWaMAzpvM9KFSyGWWRhp-ImR3rorenL1-RxP6TKc0mtf6vSRnvkBs-17HJF2IdKzEFJGV-Y57jSrHtscQ0Q3tY-yHOhiGMLo7TF51dk-4dunekS-na--Lr9UlzcX6-XismpBKF21spGutZ1mst7MHedKNNCpTSfBuUaBshYQQDTCQo2umW-s6lC7uUUJiA0ckZO9dxvDjwlTNoNPLfa9HTFMyQgtBVe11lDQD_-gd2GKY7nOAJOs_EwyVajZnmpjSCliZ7bRDzbeG87MLhWzS8U8p1IW3j9pp0357zP-J4YC6D3wy_d4_x-dWVyvV3_lvwGuPJiA</recordid><startdate>20240424</startdate><enddate>20240424</enddate><creator>Zhou, Yuanbo</creator><creator>Zhang, Lifang</creator><creator>Zhu, Zebin</creator><creator>Wang, Mengfan</creator><creator>Li, Najun</creator><creator>Qian, Tao</creator><creator>Yan, Chenglin</creator><creator>Lu, Jianmei</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4467-9441</orcidid></search><sort><creationdate>20240424</creationdate><title>Optimizing Intermediate Adsorption over PdM (M=Fe, Co, Ni, Cu) Bimetallene for Boosted Nitrate Electroreduction to Ammonia</title><author>Zhou, Yuanbo ; Zhang, Lifang ; Zhu, Zebin ; Wang, Mengfan ; Li, Najun ; Qian, Tao ; Yan, Chenglin ; Lu, Jianmei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3289-c474dcaf9045b6d118273f8bf43dd7838aa3e33272a35ed76ba8fe9d6ae43ee73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adsorption</topic><topic>Ammonia</topic><topic>ammonia production</topic><topic>bimetal</topic><topic>Bimetals</topic><topic>Catalysts</topic><topic>Chemical reduction</topic><topic>Cobalt</topic><topic>Copper</topic><topic>Dopants</topic><topic>electrochemical nitrate reduction</topic><topic>Electrochemistry</topic><topic>Electron transfer</topic><topic>Intermediates</topic><topic>Iron</topic><topic>metallene</topic><topic>Nickel</topic><topic>Nitrates</topic><topic>Nitrogen dioxide</topic><topic>Palladium</topic><topic>structure–activity relationship</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Yuanbo</creatorcontrib><creatorcontrib>Zhang, Lifang</creatorcontrib><creatorcontrib>Zhu, Zebin</creatorcontrib><creatorcontrib>Wang, Mengfan</creatorcontrib><creatorcontrib>Li, Najun</creatorcontrib><creatorcontrib>Qian, Tao</creatorcontrib><creatorcontrib>Yan, Chenglin</creatorcontrib><creatorcontrib>Lu, Jianmei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Yuanbo</au><au>Zhang, Lifang</au><au>Zhu, Zebin</au><au>Wang, Mengfan</au><au>Li, Najun</au><au>Qian, Tao</au><au>Yan, Chenglin</au><au>Lu, Jianmei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Intermediate Adsorption over PdM (M=Fe, Co, Ni, Cu) Bimetallene for Boosted Nitrate Electroreduction to Ammonia</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-04-24</date><risdate>2024</risdate><volume>63</volume><issue>18</issue><spage>e202319029</spage><epage>n/a</epage><pages>e202319029-n/a</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Electrochemical reduction of nitrate to ammonia (NO3RR) is a promising and eco‐friendly strategy for ammonia production. However, the sluggish kinetics of the eight‐electron transfer process and poor mechanistic understanding strongly impedes its application. To unveil the internal laws, herein, a library of Pd‐based bimetallene with various transition metal dopants (PdM (M=Fe, Co, Ni, Cu)) are screened to learn their structure–activity relationship towards NO3RR. The ultra‐thin structure of metallene greatly facilitates the exposure of active sites, and the transition metals dopants break the electronic balance and upshift its d‐band center, thus optimizing intermediates adsorption. The anisotropic electronic characteristics of these transition metals make the NO3RR activity in the order of PdCu&gt;PdCo≈PdFe&gt;PdNi&gt;Pd, and a record‐high NH3 yield rate of 295 mg h−1 mgcat−1 along with Faradaic efficiency of 90.9 % is achieved in neutral electrolyte on PdCu bimetallene. Detailed studies further reveal that the moderate N‐species (*NO3 and *NO2) adsorption ability, enhanced *NO activation, and reduced HER activity facilitate the NH3 production. We believe our results will give a systematic guidance to the future design of NO3RR catalysts. In this work, a library of Pd‐based bimetallene with various transition metal dopants (PdM (M=Fe, Co, Ni, Cu)) are screened to learn their structure–activity relationship towards NO3RR. The ultra‐thin structure of metallene greatly facilitates the exposure of active sites, and the transition metals dopants play a key role in precisely tuning the electronic state and optimizing intermediates adsorption, thus facilitating nitrate reduction to ammonia.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38449084</pmid><doi>10.1002/anie.202319029</doi><tpages>9</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0003-4467-9441</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2024-04, Vol.63 (18), p.e202319029-n/a
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_2942185993
source Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)
subjects Adsorption
Ammonia
ammonia production
bimetal
Bimetals
Catalysts
Chemical reduction
Cobalt
Copper
Dopants
electrochemical nitrate reduction
Electrochemistry
Electron transfer
Intermediates
Iron
metallene
Nickel
Nitrates
Nitrogen dioxide
Palladium
structure–activity relationship
Transition metals
title Optimizing Intermediate Adsorption over PdM (M=Fe, Co, Ni, Cu) Bimetallene for Boosted Nitrate Electroreduction to Ammonia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A43%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Intermediate%20Adsorption%20over%20PdM%20(M=Fe,%20Co,%20Ni,%20Cu)%20Bimetallene%20for%20Boosted%20Nitrate%20Electroreduction%20to%20Ammonia&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zhou,%20Yuanbo&rft.date=2024-04-24&rft.volume=63&rft.issue=18&rft.spage=e202319029&rft.epage=n/a&rft.pages=e202319029-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202319029&rft_dat=%3Cproquest_cross%3E3040490408%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3289-c474dcaf9045b6d118273f8bf43dd7838aa3e33272a35ed76ba8fe9d6ae43ee73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3040490408&rft_id=info:pmid/38449084&rfr_iscdi=true