Loading…
An interior-point algorithm for elastoplasticity
The problem of small‐deformation, rate‐independent elastoplasticity is treated using convex programming theory and algorithms. A finite‐step variational formulation is first derived after which the relevant potential is discretized in space and subsequently viewed as the Lagrangian associated with a...
Saved in:
Published in: | International journal for numerical methods in engineering 2007-01, Vol.69 (3), p.592-626 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4631-5d7ac2b92911f8d0de4ed109dc1a8daff23ae7820ddb1e21643463e3ef86bbdd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4631-5d7ac2b92911f8d0de4ed109dc1a8daff23ae7820ddb1e21643463e3ef86bbdd3 |
container_end_page | 626 |
container_issue | 3 |
container_start_page | 592 |
container_title | International journal for numerical methods in engineering |
container_volume | 69 |
creator | Krabbenhoft, K. Lyamin, A. V. Sloan, S. W. Wriggers, P. |
description | The problem of small‐deformation, rate‐independent elastoplasticity is treated using convex programming theory and algorithms. A finite‐step variational formulation is first derived after which the relevant potential is discretized in space and subsequently viewed as the Lagrangian associated with a convex mathematical program. Next, an algorithm, based on the classical primal–dual interior point method, is developed. Several key modifications to the conventional implementation of this algorithm are made to fully exploit the nature of the common elastoplastic boundary value problem. The resulting method is compared to state‐of‐the‐art elastoplastic procedures for which both similarities and differences are found. Finally, a number of examples are solved, demonstrating the capabilities of the algorithm when applied to standard perfect plasticity, hardening multisurface plasticity, and problems involving softening. Copyright © 2006 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.1771 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29422702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082191964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4631-5d7ac2b92911f8d0de4ed109dc1a8daff23ae7820ddb1e21643463e3ef86bbdd3</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgCs4p-BF6Ubx05k3aJj2OoVPY5kDFY0ibVKP9Z9Kh-_amrMyTXpJAfnne8CB0DngCGJPrutITYAwO0AhwykJMMDtEI3-VhnHK4RidOPeOMUCM6QjhaR2YutPWNDZsG38MZPnaWNO9VUHR2ECX0nVN268mN932FB0VsnT6bNjH6Pn25ml2Fy4e5vez6SLMo4RCGCsmc5KlJAUouMJKR1r5D6kcJFeyKAiVmnGClcpAE0gi6t9pqgueZJlSdIwud7mtbT432nWiMi7XZSlr3WycIGlECMPEw6t_IWBOIIXUT9jT3DbOWV2I1ppK2q1Hom9P-PZE356nF0OqdLksCyvr3LhfzymjPOpduHNfptTbP_PEankz5A7euE5_7720HyJhlMXiZTUXbIkf51GyFmv6A9MNjEI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082191964</pqid></control><display><type>article</type><title>An interior-point algorithm for elastoplasticity</title><source>Wiley</source><creator>Krabbenhoft, K. ; Lyamin, A. V. ; Sloan, S. W. ; Wriggers, P.</creator><creatorcontrib>Krabbenhoft, K. ; Lyamin, A. V. ; Sloan, S. W. ; Wriggers, P.</creatorcontrib><description>The problem of small‐deformation, rate‐independent elastoplasticity is treated using convex programming theory and algorithms. A finite‐step variational formulation is first derived after which the relevant potential is discretized in space and subsequently viewed as the Lagrangian associated with a convex mathematical program. Next, an algorithm, based on the classical primal–dual interior point method, is developed. Several key modifications to the conventional implementation of this algorithm are made to fully exploit the nature of the common elastoplastic boundary value problem. The resulting method is compared to state‐of‐the‐art elastoplastic procedures for which both similarities and differences are found. Finally, a number of examples are solved, demonstrating the capabilities of the algorithm when applied to standard perfect plasticity, hardening multisurface plasticity, and problems involving softening. Copyright © 2006 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.1771</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Algorithms ; Computational techniques ; Elastoplasticity ; Exact sciences and technology ; finite elements ; Fundamental areas of phenomenology (including applications) ; Inelasticity (thermoplasticity, viscoplasticity...) ; interior-point ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; optimization ; Physics ; Plasticity ; Programming ; Softening ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>International journal for numerical methods in engineering, 2007-01, Vol.69 (3), p.592-626</ispartof><rights>Copyright © 2006 John Wiley & Sons, Ltd.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4631-5d7ac2b92911f8d0de4ed109dc1a8daff23ae7820ddb1e21643463e3ef86bbdd3</citedby><cites>FETCH-LOGICAL-c4631-5d7ac2b92911f8d0de4ed109dc1a8daff23ae7820ddb1e21643463e3ef86bbdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18373841$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Krabbenhoft, K.</creatorcontrib><creatorcontrib>Lyamin, A. V.</creatorcontrib><creatorcontrib>Sloan, S. W.</creatorcontrib><creatorcontrib>Wriggers, P.</creatorcontrib><title>An interior-point algorithm for elastoplasticity</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>The problem of small‐deformation, rate‐independent elastoplasticity is treated using convex programming theory and algorithms. A finite‐step variational formulation is first derived after which the relevant potential is discretized in space and subsequently viewed as the Lagrangian associated with a convex mathematical program. Next, an algorithm, based on the classical primal–dual interior point method, is developed. Several key modifications to the conventional implementation of this algorithm are made to fully exploit the nature of the common elastoplastic boundary value problem. The resulting method is compared to state‐of‐the‐art elastoplastic procedures for which both similarities and differences are found. Finally, a number of examples are solved, demonstrating the capabilities of the algorithm when applied to standard perfect plasticity, hardening multisurface plasticity, and problems involving softening. Copyright © 2006 John Wiley & Sons, Ltd.</description><subject>Algorithms</subject><subject>Computational techniques</subject><subject>Elastoplasticity</subject><subject>Exact sciences and technology</subject><subject>finite elements</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>interior-point</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>optimization</subject><subject>Physics</subject><subject>Plasticity</subject><subject>Programming</subject><subject>Softening</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgCs4p-BF6Ubx05k3aJj2OoVPY5kDFY0ibVKP9Z9Kh-_amrMyTXpJAfnne8CB0DngCGJPrutITYAwO0AhwykJMMDtEI3-VhnHK4RidOPeOMUCM6QjhaR2YutPWNDZsG38MZPnaWNO9VUHR2ECX0nVN268mN932FB0VsnT6bNjH6Pn25ml2Fy4e5vez6SLMo4RCGCsmc5KlJAUouMJKR1r5D6kcJFeyKAiVmnGClcpAE0gi6t9pqgueZJlSdIwud7mtbT432nWiMi7XZSlr3WycIGlECMPEw6t_IWBOIIXUT9jT3DbOWV2I1ppK2q1Hom9P-PZE356nF0OqdLksCyvr3LhfzymjPOpduHNfptTbP_PEankz5A7euE5_7720HyJhlMXiZTUXbIkf51GyFmv6A9MNjEI</recordid><startdate>20070115</startdate><enddate>20070115</enddate><creator>Krabbenhoft, K.</creator><creator>Lyamin, A. V.</creator><creator>Sloan, S. W.</creator><creator>Wriggers, P.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070115</creationdate><title>An interior-point algorithm for elastoplasticity</title><author>Krabbenhoft, K. ; Lyamin, A. V. ; Sloan, S. W. ; Wriggers, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4631-5d7ac2b92911f8d0de4ed109dc1a8daff23ae7820ddb1e21643463e3ef86bbdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Computational techniques</topic><topic>Elastoplasticity</topic><topic>Exact sciences and technology</topic><topic>finite elements</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>interior-point</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>optimization</topic><topic>Physics</topic><topic>Plasticity</topic><topic>Programming</topic><topic>Softening</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krabbenhoft, K.</creatorcontrib><creatorcontrib>Lyamin, A. V.</creatorcontrib><creatorcontrib>Sloan, S. W.</creatorcontrib><creatorcontrib>Wriggers, P.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krabbenhoft, K.</au><au>Lyamin, A. V.</au><au>Sloan, S. W.</au><au>Wriggers, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An interior-point algorithm for elastoplasticity</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2007-01-15</date><risdate>2007</risdate><volume>69</volume><issue>3</issue><spage>592</spage><epage>626</epage><pages>592-626</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>The problem of small‐deformation, rate‐independent elastoplasticity is treated using convex programming theory and algorithms. A finite‐step variational formulation is first derived after which the relevant potential is discretized in space and subsequently viewed as the Lagrangian associated with a convex mathematical program. Next, an algorithm, based on the classical primal–dual interior point method, is developed. Several key modifications to the conventional implementation of this algorithm are made to fully exploit the nature of the common elastoplastic boundary value problem. The resulting method is compared to state‐of‐the‐art elastoplastic procedures for which both similarities and differences are found. Finally, a number of examples are solved, demonstrating the capabilities of the algorithm when applied to standard perfect plasticity, hardening multisurface plasticity, and problems involving softening. Copyright © 2006 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/nme.1771</doi><tpages>35</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2007-01, Vol.69 (3), p.592-626 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_29422702 |
source | Wiley |
subjects | Algorithms Computational techniques Elastoplasticity Exact sciences and technology finite elements Fundamental areas of phenomenology (including applications) Inelasticity (thermoplasticity, viscoplasticity...) interior-point Mathematical analysis Mathematical methods in physics Mathematical models optimization Physics Plasticity Programming Softening Solid mechanics Structural and continuum mechanics |
title | An interior-point algorithm for elastoplasticity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20interior-point%20algorithm%20for%20elastoplasticity&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Krabbenhoft,%20K.&rft.date=2007-01-15&rft.volume=69&rft.issue=3&rft.spage=592&rft.epage=626&rft.pages=592-626&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.1771&rft_dat=%3Cproquest_cross%3E1082191964%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4631-5d7ac2b92911f8d0de4ed109dc1a8daff23ae7820ddb1e21643463e3ef86bbdd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1082191964&rft_id=info:pmid/&rfr_iscdi=true |