Loading…

An interior-point algorithm for elastoplasticity

The problem of small‐deformation, rate‐independent elastoplasticity is treated using convex programming theory and algorithms. A finite‐step variational formulation is first derived after which the relevant potential is discretized in space and subsequently viewed as the Lagrangian associated with a...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering 2007-01, Vol.69 (3), p.592-626
Main Authors: Krabbenhoft, K., Lyamin, A. V., Sloan, S. W., Wriggers, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4631-5d7ac2b92911f8d0de4ed109dc1a8daff23ae7820ddb1e21643463e3ef86bbdd3
cites cdi_FETCH-LOGICAL-c4631-5d7ac2b92911f8d0de4ed109dc1a8daff23ae7820ddb1e21643463e3ef86bbdd3
container_end_page 626
container_issue 3
container_start_page 592
container_title International journal for numerical methods in engineering
container_volume 69
creator Krabbenhoft, K.
Lyamin, A. V.
Sloan, S. W.
Wriggers, P.
description The problem of small‐deformation, rate‐independent elastoplasticity is treated using convex programming theory and algorithms. A finite‐step variational formulation is first derived after which the relevant potential is discretized in space and subsequently viewed as the Lagrangian associated with a convex mathematical program. Next, an algorithm, based on the classical primal–dual interior point method, is developed. Several key modifications to the conventional implementation of this algorithm are made to fully exploit the nature of the common elastoplastic boundary value problem. The resulting method is compared to state‐of‐the‐art elastoplastic procedures for which both similarities and differences are found. Finally, a number of examples are solved, demonstrating the capabilities of the algorithm when applied to standard perfect plasticity, hardening multisurface plasticity, and problems involving softening. Copyright © 2006 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.1771
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29422702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082191964</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4631-5d7ac2b92911f8d0de4ed109dc1a8daff23ae7820ddb1e21643463e3ef86bbdd3</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgCs4p-BF6Ubx05k3aJj2OoVPY5kDFY0ibVKP9Z9Kh-_amrMyTXpJAfnne8CB0DngCGJPrutITYAwO0AhwykJMMDtEI3-VhnHK4RidOPeOMUCM6QjhaR2YutPWNDZsG38MZPnaWNO9VUHR2ECX0nVN268mN932FB0VsnT6bNjH6Pn25ml2Fy4e5vez6SLMo4RCGCsmc5KlJAUouMJKR1r5D6kcJFeyKAiVmnGClcpAE0gi6t9pqgueZJlSdIwud7mtbT432nWiMi7XZSlr3WycIGlECMPEw6t_IWBOIIXUT9jT3DbOWV2I1ppK2q1Hom9P-PZE356nF0OqdLksCyvr3LhfzymjPOpduHNfptTbP_PEankz5A7euE5_7720HyJhlMXiZTUXbIkf51GyFmv6A9MNjEI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082191964</pqid></control><display><type>article</type><title>An interior-point algorithm for elastoplasticity</title><source>Wiley</source><creator>Krabbenhoft, K. ; Lyamin, A. V. ; Sloan, S. W. ; Wriggers, P.</creator><creatorcontrib>Krabbenhoft, K. ; Lyamin, A. V. ; Sloan, S. W. ; Wriggers, P.</creatorcontrib><description>The problem of small‐deformation, rate‐independent elastoplasticity is treated using convex programming theory and algorithms. A finite‐step variational formulation is first derived after which the relevant potential is discretized in space and subsequently viewed as the Lagrangian associated with a convex mathematical program. Next, an algorithm, based on the classical primal–dual interior point method, is developed. Several key modifications to the conventional implementation of this algorithm are made to fully exploit the nature of the common elastoplastic boundary value problem. The resulting method is compared to state‐of‐the‐art elastoplastic procedures for which both similarities and differences are found. Finally, a number of examples are solved, demonstrating the capabilities of the algorithm when applied to standard perfect plasticity, hardening multisurface plasticity, and problems involving softening. Copyright © 2006 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.1771</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Algorithms ; Computational techniques ; Elastoplasticity ; Exact sciences and technology ; finite elements ; Fundamental areas of phenomenology (including applications) ; Inelasticity (thermoplasticity, viscoplasticity...) ; interior-point ; Mathematical analysis ; Mathematical methods in physics ; Mathematical models ; optimization ; Physics ; Plasticity ; Programming ; Softening ; Solid mechanics ; Structural and continuum mechanics</subject><ispartof>International journal for numerical methods in engineering, 2007-01, Vol.69 (3), p.592-626</ispartof><rights>Copyright © 2006 John Wiley &amp; Sons, Ltd.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4631-5d7ac2b92911f8d0de4ed109dc1a8daff23ae7820ddb1e21643463e3ef86bbdd3</citedby><cites>FETCH-LOGICAL-c4631-5d7ac2b92911f8d0de4ed109dc1a8daff23ae7820ddb1e21643463e3ef86bbdd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18373841$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Krabbenhoft, K.</creatorcontrib><creatorcontrib>Lyamin, A. V.</creatorcontrib><creatorcontrib>Sloan, S. W.</creatorcontrib><creatorcontrib>Wriggers, P.</creatorcontrib><title>An interior-point algorithm for elastoplasticity</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>The problem of small‐deformation, rate‐independent elastoplasticity is treated using convex programming theory and algorithms. A finite‐step variational formulation is first derived after which the relevant potential is discretized in space and subsequently viewed as the Lagrangian associated with a convex mathematical program. Next, an algorithm, based on the classical primal–dual interior point method, is developed. Several key modifications to the conventional implementation of this algorithm are made to fully exploit the nature of the common elastoplastic boundary value problem. The resulting method is compared to state‐of‐the‐art elastoplastic procedures for which both similarities and differences are found. Finally, a number of examples are solved, demonstrating the capabilities of the algorithm when applied to standard perfect plasticity, hardening multisurface plasticity, and problems involving softening. Copyright © 2006 John Wiley &amp; Sons, Ltd.</description><subject>Algorithms</subject><subject>Computational techniques</subject><subject>Elastoplasticity</subject><subject>Exact sciences and technology</subject><subject>finite elements</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inelasticity (thermoplasticity, viscoplasticity...)</subject><subject>interior-point</subject><subject>Mathematical analysis</subject><subject>Mathematical methods in physics</subject><subject>Mathematical models</subject><subject>optimization</subject><subject>Physics</subject><subject>Plasticity</subject><subject>Programming</subject><subject>Softening</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgCs4p-BF6Ubx05k3aJj2OoVPY5kDFY0ibVKP9Z9Kh-_amrMyTXpJAfnne8CB0DngCGJPrutITYAwO0AhwykJMMDtEI3-VhnHK4RidOPeOMUCM6QjhaR2YutPWNDZsG38MZPnaWNO9VUHR2ECX0nVN268mN932FB0VsnT6bNjH6Pn25ml2Fy4e5vez6SLMo4RCGCsmc5KlJAUouMJKR1r5D6kcJFeyKAiVmnGClcpAE0gi6t9pqgueZJlSdIwud7mtbT432nWiMi7XZSlr3WycIGlECMPEw6t_IWBOIIXUT9jT3DbOWV2I1ppK2q1Hom9P-PZE356nF0OqdLksCyvr3LhfzymjPOpduHNfptTbP_PEankz5A7euE5_7720HyJhlMXiZTUXbIkf51GyFmv6A9MNjEI</recordid><startdate>20070115</startdate><enddate>20070115</enddate><creator>Krabbenhoft, K.</creator><creator>Lyamin, A. V.</creator><creator>Sloan, S. W.</creator><creator>Wriggers, P.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070115</creationdate><title>An interior-point algorithm for elastoplasticity</title><author>Krabbenhoft, K. ; Lyamin, A. V. ; Sloan, S. W. ; Wriggers, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4631-5d7ac2b92911f8d0de4ed109dc1a8daff23ae7820ddb1e21643463e3ef86bbdd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Computational techniques</topic><topic>Elastoplasticity</topic><topic>Exact sciences and technology</topic><topic>finite elements</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inelasticity (thermoplasticity, viscoplasticity...)</topic><topic>interior-point</topic><topic>Mathematical analysis</topic><topic>Mathematical methods in physics</topic><topic>Mathematical models</topic><topic>optimization</topic><topic>Physics</topic><topic>Plasticity</topic><topic>Programming</topic><topic>Softening</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krabbenhoft, K.</creatorcontrib><creatorcontrib>Lyamin, A. V.</creatorcontrib><creatorcontrib>Sloan, S. W.</creatorcontrib><creatorcontrib>Wriggers, P.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krabbenhoft, K.</au><au>Lyamin, A. V.</au><au>Sloan, S. W.</au><au>Wriggers, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An interior-point algorithm for elastoplasticity</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2007-01-15</date><risdate>2007</risdate><volume>69</volume><issue>3</issue><spage>592</spage><epage>626</epage><pages>592-626</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>The problem of small‐deformation, rate‐independent elastoplasticity is treated using convex programming theory and algorithms. A finite‐step variational formulation is first derived after which the relevant potential is discretized in space and subsequently viewed as the Lagrangian associated with a convex mathematical program. Next, an algorithm, based on the classical primal–dual interior point method, is developed. Several key modifications to the conventional implementation of this algorithm are made to fully exploit the nature of the common elastoplastic boundary value problem. The resulting method is compared to state‐of‐the‐art elastoplastic procedures for which both similarities and differences are found. Finally, a number of examples are solved, demonstrating the capabilities of the algorithm when applied to standard perfect plasticity, hardening multisurface plasticity, and problems involving softening. Copyright © 2006 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/nme.1771</doi><tpages>35</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2007-01, Vol.69 (3), p.592-626
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_miscellaneous_29422702
source Wiley
subjects Algorithms
Computational techniques
Elastoplasticity
Exact sciences and technology
finite elements
Fundamental areas of phenomenology (including applications)
Inelasticity (thermoplasticity, viscoplasticity...)
interior-point
Mathematical analysis
Mathematical methods in physics
Mathematical models
optimization
Physics
Plasticity
Programming
Softening
Solid mechanics
Structural and continuum mechanics
title An interior-point algorithm for elastoplasticity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A17%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20interior-point%20algorithm%20for%20elastoplasticity&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Krabbenhoft,%20K.&rft.date=2007-01-15&rft.volume=69&rft.issue=3&rft.spage=592&rft.epage=626&rft.pages=592-626&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.1771&rft_dat=%3Cproquest_cross%3E1082191964%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4631-5d7ac2b92911f8d0de4ed109dc1a8daff23ae7820ddb1e21643463e3ef86bbdd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1082191964&rft_id=info:pmid/&rfr_iscdi=true