Loading…

Non-intrusive, three-dimensional temperature and composition measurements inside fluid cells in microgravity using a confocal holography microscope

Application of a confocal scanning laser holography (CSLH) microscope to the study of fluid flow in a microgravity environment is described herein. This microscope offers a new, non-intrusive means to determine three-dimensional density gradients within solid objects, fluids, and plasmas, including...

Full description

Saved in:
Bibliographic Details
Published in:Acta astronautica 2007-04, Vol.60 (8), p.723-727
Main Authors: Jacquemin, P.B., Laurin, D., Atalick, S., McLeod, R., Lai, S., Herring, R.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-c223dc8cbce68a99f0eca526c3d08161be8674c604109ed75cf72e1a9d8196cb3
cites cdi_FETCH-LOGICAL-c412t-c223dc8cbce68a99f0eca526c3d08161be8674c604109ed75cf72e1a9d8196cb3
container_end_page 727
container_issue 8
container_start_page 723
container_title Acta astronautica
container_volume 60
creator Jacquemin, P.B.
Laurin, D.
Atalick, S.
McLeod, R.
Lai, S.
Herring, R.A.
description Application of a confocal scanning laser holography (CSLH) microscope to the study of fluid flow in a microgravity environment is described herein. This microscope offers a new, non-intrusive means to determine three-dimensional density gradients within solid objects, fluids, and plasmas, including flames. The index-of-refraction is determined from the phase measurements of the microscope, which is a function of the object temperature and composition. The object being studied is a fluid-cell chamber, which is heated and cooled on opposing walls to produce a steady-state fluid flow due to convection and heat transfer. The holograms are created from the interference of a “known” reference beam with an “unknown” object beam. A three-dimensional amplitude and phase image of the object is produced by the reconstruction of many holograms, where each hologram represents a scanned point inside the object.
doi_str_mv 10.1016/j.actaastro.2006.10.011
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_29423671</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0094576506003912</els_id><sourcerecordid>1082187838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-c223dc8cbce68a99f0eca526c3d08161be8674c604109ed75cf72e1a9d8196cb3</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EEkPpM-AVYkEG28n4Z1lVFJAq2LRry3N90_EoiYPtjDTPwQvX0SCWwMrSud85vvYh5B1nW864_HTcOijO5ZLiVjAmq7plnL8gG66VaQRr2UuyYcx0zU7J3WvyJucjY0wJbTbk1_c4NWEqacnhhB9pOSTExocRpxzi5AZacJwxubIkpG7yFOI4xxxKndIRXa56hUumoTo80n5YQqVwGFaJjgFSfEruFMqZ1kumJ-pqxtRHqOGHOKzD-XC-gBnijG_Jq94NGa9_n1fk8e7zw-3X5v7Hl2-3N_cNdFyUBoRoPWjYA0rtjOkZgtsJCa1nmku-Ry1VB5J1nBn0age9Esid8ZobCfv2iry_5M4p_lwwFzuGvC7uJoxLtsJ0opWKV_DDX0HOtOBGd1r_H6qVbldUXdD13Tlhb-cURpfOFbJrtfZo_1Rr12rXQa22Om8uTqy_cwqYbIaAE6APCaFYH8M_M54B87213g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082187838</pqid></control><display><type>article</type><title>Non-intrusive, three-dimensional temperature and composition measurements inside fluid cells in microgravity using a confocal holography microscope</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Jacquemin, P.B. ; Laurin, D. ; Atalick, S. ; McLeod, R. ; Lai, S. ; Herring, R.A.</creator><creatorcontrib>Jacquemin, P.B. ; Laurin, D. ; Atalick, S. ; McLeod, R. ; Lai, S. ; Herring, R.A.</creatorcontrib><description>Application of a confocal scanning laser holography (CSLH) microscope to the study of fluid flow in a microgravity environment is described herein. This microscope offers a new, non-intrusive means to determine three-dimensional density gradients within solid objects, fluids, and plasmas, including flames. The index-of-refraction is determined from the phase measurements of the microscope, which is a function of the object temperature and composition. The object being studied is a fluid-cell chamber, which is heated and cooled on opposing walls to produce a steady-state fluid flow due to convection and heat transfer. The holograms are created from the interference of a “known” reference beam with an “unknown” object beam. A three-dimensional amplitude and phase image of the object is produced by the reconstruction of many holograms, where each hologram represents a scanned point inside the object.</description><identifier>ISSN: 0094-5765</identifier><identifier>EISSN: 1879-2030</identifier><identifier>DOI: 10.1016/j.actaastro.2006.10.011</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Beams (radiation) ; Fluid dynamics ; Fluid flow ; Fluids ; Holograms ; Holography ; Microscopes ; Three dimensional</subject><ispartof>Acta astronautica, 2007-04, Vol.60 (8), p.723-727</ispartof><rights>2006 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-c223dc8cbce68a99f0eca526c3d08161be8674c604109ed75cf72e1a9d8196cb3</citedby><cites>FETCH-LOGICAL-c412t-c223dc8cbce68a99f0eca526c3d08161be8674c604109ed75cf72e1a9d8196cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jacquemin, P.B.</creatorcontrib><creatorcontrib>Laurin, D.</creatorcontrib><creatorcontrib>Atalick, S.</creatorcontrib><creatorcontrib>McLeod, R.</creatorcontrib><creatorcontrib>Lai, S.</creatorcontrib><creatorcontrib>Herring, R.A.</creatorcontrib><title>Non-intrusive, three-dimensional temperature and composition measurements inside fluid cells in microgravity using a confocal holography microscope</title><title>Acta astronautica</title><description>Application of a confocal scanning laser holography (CSLH) microscope to the study of fluid flow in a microgravity environment is described herein. This microscope offers a new, non-intrusive means to determine three-dimensional density gradients within solid objects, fluids, and plasmas, including flames. The index-of-refraction is determined from the phase measurements of the microscope, which is a function of the object temperature and composition. The object being studied is a fluid-cell chamber, which is heated and cooled on opposing walls to produce a steady-state fluid flow due to convection and heat transfer. The holograms are created from the interference of a “known” reference beam with an “unknown” object beam. A three-dimensional amplitude and phase image of the object is produced by the reconstruction of many holograms, where each hologram represents a scanned point inside the object.</description><subject>Beams (radiation)</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Holograms</subject><subject>Holography</subject><subject>Microscopes</subject><subject>Three dimensional</subject><issn>0094-5765</issn><issn>1879-2030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u1DAUhS0EEkPpM-AVYkEG28n4Z1lVFJAq2LRry3N90_EoiYPtjDTPwQvX0SCWwMrSud85vvYh5B1nW864_HTcOijO5ZLiVjAmq7plnL8gG66VaQRr2UuyYcx0zU7J3WvyJucjY0wJbTbk1_c4NWEqacnhhB9pOSTExocRpxzi5AZacJwxubIkpG7yFOI4xxxKndIRXa56hUumoTo80n5YQqVwGFaJjgFSfEruFMqZ1kumJ-pqxtRHqOGHOKzD-XC-gBnijG_Jq94NGa9_n1fk8e7zw-3X5v7Hl2-3N_cNdFyUBoRoPWjYA0rtjOkZgtsJCa1nmku-Ry1VB5J1nBn0age9Esid8ZobCfv2iry_5M4p_lwwFzuGvC7uJoxLtsJ0opWKV_DDX0HOtOBGd1r_H6qVbldUXdD13Tlhb-cURpfOFbJrtfZo_1Rr12rXQa22Om8uTqy_cwqYbIaAE6APCaFYH8M_M54B87213g</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Jacquemin, P.B.</creator><creator>Laurin, D.</creator><creator>Atalick, S.</creator><creator>McLeod, R.</creator><creator>Lai, S.</creator><creator>Herring, R.A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>7SR</scope><scope>7U5</scope><scope>F28</scope><scope>JG9</scope></search><sort><creationdate>20070401</creationdate><title>Non-intrusive, three-dimensional temperature and composition measurements inside fluid cells in microgravity using a confocal holography microscope</title><author>Jacquemin, P.B. ; Laurin, D. ; Atalick, S. ; McLeod, R. ; Lai, S. ; Herring, R.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-c223dc8cbce68a99f0eca526c3d08161be8674c604109ed75cf72e1a9d8196cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Beams (radiation)</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Holograms</topic><topic>Holography</topic><topic>Microscopes</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacquemin, P.B.</creatorcontrib><creatorcontrib>Laurin, D.</creatorcontrib><creatorcontrib>Atalick, S.</creatorcontrib><creatorcontrib>McLeod, R.</creatorcontrib><creatorcontrib>Lai, S.</creatorcontrib><creatorcontrib>Herring, R.A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><jtitle>Acta astronautica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacquemin, P.B.</au><au>Laurin, D.</au><au>Atalick, S.</au><au>McLeod, R.</au><au>Lai, S.</au><au>Herring, R.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-intrusive, three-dimensional temperature and composition measurements inside fluid cells in microgravity using a confocal holography microscope</atitle><jtitle>Acta astronautica</jtitle><date>2007-04-01</date><risdate>2007</risdate><volume>60</volume><issue>8</issue><spage>723</spage><epage>727</epage><pages>723-727</pages><issn>0094-5765</issn><eissn>1879-2030</eissn><abstract>Application of a confocal scanning laser holography (CSLH) microscope to the study of fluid flow in a microgravity environment is described herein. This microscope offers a new, non-intrusive means to determine three-dimensional density gradients within solid objects, fluids, and plasmas, including flames. The index-of-refraction is determined from the phase measurements of the microscope, which is a function of the object temperature and composition. The object being studied is a fluid-cell chamber, which is heated and cooled on opposing walls to produce a steady-state fluid flow due to convection and heat transfer. The holograms are created from the interference of a “known” reference beam with an “unknown” object beam. A three-dimensional amplitude and phase image of the object is produced by the reconstruction of many holograms, where each hologram represents a scanned point inside the object.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.actaastro.2006.10.011</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-5765
ispartof Acta astronautica, 2007-04, Vol.60 (8), p.723-727
issn 0094-5765
1879-2030
language eng
recordid cdi_proquest_miscellaneous_29423671
source ScienceDirect Freedom Collection 2022-2024
subjects Beams (radiation)
Fluid dynamics
Fluid flow
Fluids
Holograms
Holography
Microscopes
Three dimensional
title Non-intrusive, three-dimensional temperature and composition measurements inside fluid cells in microgravity using a confocal holography microscope
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A08%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-intrusive,%20three-dimensional%20temperature%20and%20composition%20measurements%20inside%20fluid%20cells%20in%20microgravity%20using%20a%20confocal%20holography%20microscope&rft.jtitle=Acta%20astronautica&rft.au=Jacquemin,%20P.B.&rft.date=2007-04-01&rft.volume=60&rft.issue=8&rft.spage=723&rft.epage=727&rft.pages=723-727&rft.issn=0094-5765&rft.eissn=1879-2030&rft_id=info:doi/10.1016/j.actaastro.2006.10.011&rft_dat=%3Cproquest_cross%3E1082187838%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-c223dc8cbce68a99f0eca526c3d08161be8674c604109ed75cf72e1a9d8196cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1082187838&rft_id=info:pmid/&rfr_iscdi=true