Loading…
Neural-network-based maximum-power-point tracking of coupled-inductor interleaved-boost-converter-supplied PV system using fuzzy controller
The photovoltaic (PV) generator exhibits a nonlinear V-I characteristic and its maximum power (MP) point varies with solar insolation. In this paper, a feedforward MP-point tracking scheme is developed for the coupled-inductor interleaved-boost-converter-fed PV system using a fuzzy controller. The p...
Saved in:
Published in: | IEEE transactions on industrial electronics (1982) 2003-08, Vol.50 (4), p.749-758 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c487t-f7e0920890832214bb44f2dc4e4515fc3c5864ddf0a8e18532418c6973fe8e873 |
---|---|
cites | cdi_FETCH-LOGICAL-c487t-f7e0920890832214bb44f2dc4e4515fc3c5864ddf0a8e18532418c6973fe8e873 |
container_end_page | 758 |
container_issue | 4 |
container_start_page | 749 |
container_title | IEEE transactions on industrial electronics (1982) |
container_volume | 50 |
creator | Veerachary, M. Senjyu, T. Uezato, K. |
description | The photovoltaic (PV) generator exhibits a nonlinear V-I characteristic and its maximum power (MP) point varies with solar insolation. In this paper, a feedforward MP-point tracking scheme is developed for the coupled-inductor interleaved-boost-converter-fed PV system using a fuzzy controller. The proposed converter has lower switch current stress and improved efficiency over the noncoupled converter system. For a given solar insolation, the tracking algorithm changes the duty ratio of the converter such that the solar cell array voltage equals the voltage corresponding to the MP point. This is done by the feedforward loop, which generates an error signal by comparing the instantaneous array voltage and reference voltage corresponding to the MP point. Depending on the error and change of error signals, the fuzzy controller generates a control signal for the pulsewidth-modulation generator which in turn adjusts the duty ratio of the converter. The reference voltage corresponding to the MP point for the feedforward loop is obtained by an offline trained neural network. Experimental data are used for offline training of the neural network, which employs a backpropagation algorithm. The proposed peak power tracking effectiveness is demonstrated through simulation and experimental results. Tracking performance of the proposed controller is also compared with the conventional proportional-plus-integral-controller-based system. These studies reveal that the fuzzy controller results in better tracking performance. |
doi_str_mv | 10.1109/TIE.2003.814762 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_29429762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1215479</ieee_id><sourcerecordid>901697467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-f7e0920890832214bb44f2dc4e4515fc3c5864ddf0a8e18532418c6973fe8e873</originalsourceid><addsrcrecordid>eNqFkU1LHTEUhkNpobfWdRfdDF3oKtckk5lJlkXUCtK6ULchN3NSRjOTMR_a61_wT5vhFoQuLAdy4PCcB05ehL5QsqaUyKOr85M1I6ReC8q7lr1DK9o0HZaSi_doRVgnMCG8_Yg-xXhLCOUNbVbo-SfkoB2eID36cIc3OkJfjfrPMOYRz_4RQnmHKVUpaHM3TL8rbyvj8-ygx8PUZ5N8qAoAwYF-KMON9zFh46cHCGWKY55nNxTr5U0VtzHBWOW4iGx-etoW15SCdw7CZ_TBahdh_2_fQ9enJ1fHP_DFr7Pz4-8X2HDRJWw7IJIRIYmoGaN8s-Hcst5wWE6ypjaNaHnfW6IFUNHUjFNhWtnVFgSIrt5DhzvvHPx9hpjUOEQDzukJfI5KElpo3i7kwZskk5zJ8tn_BwXnnLC2gN_-AW99DlM5VwlRZKVIgY52kAk-xgBWzWEYddgqStQStiphqyVstQu7bHzdbQwA8Eoz2vBO1i-2wqgH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884292920</pqid></control><display><type>article</type><title>Neural-network-based maximum-power-point tracking of coupled-inductor interleaved-boost-converter-supplied PV system using fuzzy controller</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Veerachary, M. ; Senjyu, T. ; Uezato, K.</creator><creatorcontrib>Veerachary, M. ; Senjyu, T. ; Uezato, K.</creatorcontrib><description>The photovoltaic (PV) generator exhibits a nonlinear V-I characteristic and its maximum power (MP) point varies with solar insolation. In this paper, a feedforward MP-point tracking scheme is developed for the coupled-inductor interleaved-boost-converter-fed PV system using a fuzzy controller. The proposed converter has lower switch current stress and improved efficiency over the noncoupled converter system. For a given solar insolation, the tracking algorithm changes the duty ratio of the converter such that the solar cell array voltage equals the voltage corresponding to the MP point. This is done by the feedforward loop, which generates an error signal by comparing the instantaneous array voltage and reference voltage corresponding to the MP point. Depending on the error and change of error signals, the fuzzy controller generates a control signal for the pulsewidth-modulation generator which in turn adjusts the duty ratio of the converter. The reference voltage corresponding to the MP point for the feedforward loop is obtained by an offline trained neural network. Experimental data are used for offline training of the neural network, which employs a backpropagation algorithm. The proposed peak power tracking effectiveness is demonstrated through simulation and experimental results. Tracking performance of the proposed controller is also compared with the conventional proportional-plus-integral-controller-based system. These studies reveal that the fuzzy controller results in better tracking performance.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2003.814762</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Control systems ; Error correction ; Fuzzy control ; Fuzzy systems ; Neural networks ; Pulse generation ; Signal generators ; Solar power generation ; Studies ; Switches ; Switching converters ; Voltage</subject><ispartof>IEEE transactions on industrial electronics (1982), 2003-08, Vol.50 (4), p.749-758</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-f7e0920890832214bb44f2dc4e4515fc3c5864ddf0a8e18532418c6973fe8e873</citedby><cites>FETCH-LOGICAL-c487t-f7e0920890832214bb44f2dc4e4515fc3c5864ddf0a8e18532418c6973fe8e873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1215479$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Veerachary, M.</creatorcontrib><creatorcontrib>Senjyu, T.</creatorcontrib><creatorcontrib>Uezato, K.</creatorcontrib><title>Neural-network-based maximum-power-point tracking of coupled-inductor interleaved-boost-converter-supplied PV system using fuzzy controller</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>The photovoltaic (PV) generator exhibits a nonlinear V-I characteristic and its maximum power (MP) point varies with solar insolation. In this paper, a feedforward MP-point tracking scheme is developed for the coupled-inductor interleaved-boost-converter-fed PV system using a fuzzy controller. The proposed converter has lower switch current stress and improved efficiency over the noncoupled converter system. For a given solar insolation, the tracking algorithm changes the duty ratio of the converter such that the solar cell array voltage equals the voltage corresponding to the MP point. This is done by the feedforward loop, which generates an error signal by comparing the instantaneous array voltage and reference voltage corresponding to the MP point. Depending on the error and change of error signals, the fuzzy controller generates a control signal for the pulsewidth-modulation generator which in turn adjusts the duty ratio of the converter. The reference voltage corresponding to the MP point for the feedforward loop is obtained by an offline trained neural network. Experimental data are used for offline training of the neural network, which employs a backpropagation algorithm. The proposed peak power tracking effectiveness is demonstrated through simulation and experimental results. Tracking performance of the proposed controller is also compared with the conventional proportional-plus-integral-controller-based system. These studies reveal that the fuzzy controller results in better tracking performance.</description><subject>Control systems</subject><subject>Error correction</subject><subject>Fuzzy control</subject><subject>Fuzzy systems</subject><subject>Neural networks</subject><subject>Pulse generation</subject><subject>Signal generators</subject><subject>Solar power generation</subject><subject>Studies</subject><subject>Switches</subject><subject>Switching converters</subject><subject>Voltage</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LHTEUhkNpobfWdRfdDF3oKtckk5lJlkXUCtK6ULchN3NSRjOTMR_a61_wT5vhFoQuLAdy4PCcB05ehL5QsqaUyKOr85M1I6ReC8q7lr1DK9o0HZaSi_doRVgnMCG8_Yg-xXhLCOUNbVbo-SfkoB2eID36cIc3OkJfjfrPMOYRz_4RQnmHKVUpaHM3TL8rbyvj8-ygx8PUZ5N8qAoAwYF-KMON9zFh46cHCGWKY55nNxTr5U0VtzHBWOW4iGx-etoW15SCdw7CZ_TBahdh_2_fQ9enJ1fHP_DFr7Pz4-8X2HDRJWw7IJIRIYmoGaN8s-Hcst5wWE6ypjaNaHnfW6IFUNHUjFNhWtnVFgSIrt5DhzvvHPx9hpjUOEQDzukJfI5KElpo3i7kwZskk5zJ8tn_BwXnnLC2gN_-AW99DlM5VwlRZKVIgY52kAk-xgBWzWEYddgqStQStiphqyVstQu7bHzdbQwA8Eoz2vBO1i-2wqgH</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>Veerachary, M.</creator><creator>Senjyu, T.</creator><creator>Uezato, K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7TB</scope><scope>FR3</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>20030801</creationdate><title>Neural-network-based maximum-power-point tracking of coupled-inductor interleaved-boost-converter-supplied PV system using fuzzy controller</title><author>Veerachary, M. ; Senjyu, T. ; Uezato, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-f7e0920890832214bb44f2dc4e4515fc3c5864ddf0a8e18532418c6973fe8e873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Control systems</topic><topic>Error correction</topic><topic>Fuzzy control</topic><topic>Fuzzy systems</topic><topic>Neural networks</topic><topic>Pulse generation</topic><topic>Signal generators</topic><topic>Solar power generation</topic><topic>Studies</topic><topic>Switches</topic><topic>Switching converters</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veerachary, M.</creatorcontrib><creatorcontrib>Senjyu, T.</creatorcontrib><creatorcontrib>Uezato, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veerachary, M.</au><au>Senjyu, T.</au><au>Uezato, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural-network-based maximum-power-point tracking of coupled-inductor interleaved-boost-converter-supplied PV system using fuzzy controller</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2003-08-01</date><risdate>2003</risdate><volume>50</volume><issue>4</issue><spage>749</spage><epage>758</epage><pages>749-758</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>The photovoltaic (PV) generator exhibits a nonlinear V-I characteristic and its maximum power (MP) point varies with solar insolation. In this paper, a feedforward MP-point tracking scheme is developed for the coupled-inductor interleaved-boost-converter-fed PV system using a fuzzy controller. The proposed converter has lower switch current stress and improved efficiency over the noncoupled converter system. For a given solar insolation, the tracking algorithm changes the duty ratio of the converter such that the solar cell array voltage equals the voltage corresponding to the MP point. This is done by the feedforward loop, which generates an error signal by comparing the instantaneous array voltage and reference voltage corresponding to the MP point. Depending on the error and change of error signals, the fuzzy controller generates a control signal for the pulsewidth-modulation generator which in turn adjusts the duty ratio of the converter. The reference voltage corresponding to the MP point for the feedforward loop is obtained by an offline trained neural network. Experimental data are used for offline training of the neural network, which employs a backpropagation algorithm. The proposed peak power tracking effectiveness is demonstrated through simulation and experimental results. Tracking performance of the proposed controller is also compared with the conventional proportional-plus-integral-controller-based system. These studies reveal that the fuzzy controller results in better tracking performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2003.814762</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0046 |
ispartof | IEEE transactions on industrial electronics (1982), 2003-08, Vol.50 (4), p.749-758 |
issn | 0278-0046 1557-9948 |
language | eng |
recordid | cdi_proquest_miscellaneous_29429762 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Control systems Error correction Fuzzy control Fuzzy systems Neural networks Pulse generation Signal generators Solar power generation Studies Switches Switching converters Voltage |
title | Neural-network-based maximum-power-point tracking of coupled-inductor interleaved-boost-converter-supplied PV system using fuzzy controller |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural-network-based%20maximum-power-point%20tracking%20of%20coupled-inductor%20interleaved-boost-converter-supplied%20PV%20system%20using%20fuzzy%20controller&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Veerachary,%20M.&rft.date=2003-08-01&rft.volume=50&rft.issue=4&rft.spage=749&rft.epage=758&rft.pages=749-758&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2003.814762&rft_dat=%3Cproquest_ieee_%3E901697467%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-f7e0920890832214bb44f2dc4e4515fc3c5864ddf0a8e18532418c6973fe8e873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884292920&rft_id=info:pmid/&rft_ieee_id=1215479&rfr_iscdi=true |