Loading…

Neural-network-based maximum-power-point tracking of coupled-inductor interleaved-boost-converter-supplied PV system using fuzzy controller

The photovoltaic (PV) generator exhibits a nonlinear V-I characteristic and its maximum power (MP) point varies with solar insolation. In this paper, a feedforward MP-point tracking scheme is developed for the coupled-inductor interleaved-boost-converter-fed PV system using a fuzzy controller. The p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2003-08, Vol.50 (4), p.749-758
Main Authors: Veerachary, M., Senjyu, T., Uezato, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c487t-f7e0920890832214bb44f2dc4e4515fc3c5864ddf0a8e18532418c6973fe8e873
cites cdi_FETCH-LOGICAL-c487t-f7e0920890832214bb44f2dc4e4515fc3c5864ddf0a8e18532418c6973fe8e873
container_end_page 758
container_issue 4
container_start_page 749
container_title IEEE transactions on industrial electronics (1982)
container_volume 50
creator Veerachary, M.
Senjyu, T.
Uezato, K.
description The photovoltaic (PV) generator exhibits a nonlinear V-I characteristic and its maximum power (MP) point varies with solar insolation. In this paper, a feedforward MP-point tracking scheme is developed for the coupled-inductor interleaved-boost-converter-fed PV system using a fuzzy controller. The proposed converter has lower switch current stress and improved efficiency over the noncoupled converter system. For a given solar insolation, the tracking algorithm changes the duty ratio of the converter such that the solar cell array voltage equals the voltage corresponding to the MP point. This is done by the feedforward loop, which generates an error signal by comparing the instantaneous array voltage and reference voltage corresponding to the MP point. Depending on the error and change of error signals, the fuzzy controller generates a control signal for the pulsewidth-modulation generator which in turn adjusts the duty ratio of the converter. The reference voltage corresponding to the MP point for the feedforward loop is obtained by an offline trained neural network. Experimental data are used for offline training of the neural network, which employs a backpropagation algorithm. The proposed peak power tracking effectiveness is demonstrated through simulation and experimental results. Tracking performance of the proposed controller is also compared with the conventional proportional-plus-integral-controller-based system. These studies reveal that the fuzzy controller results in better tracking performance.
doi_str_mv 10.1109/TIE.2003.814762
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_29429762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>1215479</ieee_id><sourcerecordid>901697467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-f7e0920890832214bb44f2dc4e4515fc3c5864ddf0a8e18532418c6973fe8e873</originalsourceid><addsrcrecordid>eNqFkU1LHTEUhkNpobfWdRfdDF3oKtckk5lJlkXUCtK6ULchN3NSRjOTMR_a61_wT5vhFoQuLAdy4PCcB05ehL5QsqaUyKOr85M1I6ReC8q7lr1DK9o0HZaSi_doRVgnMCG8_Yg-xXhLCOUNbVbo-SfkoB2eID36cIc3OkJfjfrPMOYRz_4RQnmHKVUpaHM3TL8rbyvj8-ygx8PUZ5N8qAoAwYF-KMON9zFh46cHCGWKY55nNxTr5U0VtzHBWOW4iGx-etoW15SCdw7CZ_TBahdh_2_fQ9enJ1fHP_DFr7Pz4-8X2HDRJWw7IJIRIYmoGaN8s-Hcst5wWE6ypjaNaHnfW6IFUNHUjFNhWtnVFgSIrt5DhzvvHPx9hpjUOEQDzukJfI5KElpo3i7kwZskk5zJ8tn_BwXnnLC2gN_-AW99DlM5VwlRZKVIgY52kAk-xgBWzWEYddgqStQStiphqyVstQu7bHzdbQwA8Eoz2vBO1i-2wqgH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884292920</pqid></control><display><type>article</type><title>Neural-network-based maximum-power-point tracking of coupled-inductor interleaved-boost-converter-supplied PV system using fuzzy controller</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Veerachary, M. ; Senjyu, T. ; Uezato, K.</creator><creatorcontrib>Veerachary, M. ; Senjyu, T. ; Uezato, K.</creatorcontrib><description>The photovoltaic (PV) generator exhibits a nonlinear V-I characteristic and its maximum power (MP) point varies with solar insolation. In this paper, a feedforward MP-point tracking scheme is developed for the coupled-inductor interleaved-boost-converter-fed PV system using a fuzzy controller. The proposed converter has lower switch current stress and improved efficiency over the noncoupled converter system. For a given solar insolation, the tracking algorithm changes the duty ratio of the converter such that the solar cell array voltage equals the voltage corresponding to the MP point. This is done by the feedforward loop, which generates an error signal by comparing the instantaneous array voltage and reference voltage corresponding to the MP point. Depending on the error and change of error signals, the fuzzy controller generates a control signal for the pulsewidth-modulation generator which in turn adjusts the duty ratio of the converter. The reference voltage corresponding to the MP point for the feedforward loop is obtained by an offline trained neural network. Experimental data are used for offline training of the neural network, which employs a backpropagation algorithm. The proposed peak power tracking effectiveness is demonstrated through simulation and experimental results. Tracking performance of the proposed controller is also compared with the conventional proportional-plus-integral-controller-based system. These studies reveal that the fuzzy controller results in better tracking performance.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2003.814762</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Control systems ; Error correction ; Fuzzy control ; Fuzzy systems ; Neural networks ; Pulse generation ; Signal generators ; Solar power generation ; Studies ; Switches ; Switching converters ; Voltage</subject><ispartof>IEEE transactions on industrial electronics (1982), 2003-08, Vol.50 (4), p.749-758</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-f7e0920890832214bb44f2dc4e4515fc3c5864ddf0a8e18532418c6973fe8e873</citedby><cites>FETCH-LOGICAL-c487t-f7e0920890832214bb44f2dc4e4515fc3c5864ddf0a8e18532418c6973fe8e873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/1215479$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Veerachary, M.</creatorcontrib><creatorcontrib>Senjyu, T.</creatorcontrib><creatorcontrib>Uezato, K.</creatorcontrib><title>Neural-network-based maximum-power-point tracking of coupled-inductor interleaved-boost-converter-supplied PV system using fuzzy controller</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>The photovoltaic (PV) generator exhibits a nonlinear V-I characteristic and its maximum power (MP) point varies with solar insolation. In this paper, a feedforward MP-point tracking scheme is developed for the coupled-inductor interleaved-boost-converter-fed PV system using a fuzzy controller. The proposed converter has lower switch current stress and improved efficiency over the noncoupled converter system. For a given solar insolation, the tracking algorithm changes the duty ratio of the converter such that the solar cell array voltage equals the voltage corresponding to the MP point. This is done by the feedforward loop, which generates an error signal by comparing the instantaneous array voltage and reference voltage corresponding to the MP point. Depending on the error and change of error signals, the fuzzy controller generates a control signal for the pulsewidth-modulation generator which in turn adjusts the duty ratio of the converter. The reference voltage corresponding to the MP point for the feedforward loop is obtained by an offline trained neural network. Experimental data are used for offline training of the neural network, which employs a backpropagation algorithm. The proposed peak power tracking effectiveness is demonstrated through simulation and experimental results. Tracking performance of the proposed controller is also compared with the conventional proportional-plus-integral-controller-based system. These studies reveal that the fuzzy controller results in better tracking performance.</description><subject>Control systems</subject><subject>Error correction</subject><subject>Fuzzy control</subject><subject>Fuzzy systems</subject><subject>Neural networks</subject><subject>Pulse generation</subject><subject>Signal generators</subject><subject>Solar power generation</subject><subject>Studies</subject><subject>Switches</subject><subject>Switching converters</subject><subject>Voltage</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkU1LHTEUhkNpobfWdRfdDF3oKtckk5lJlkXUCtK6ULchN3NSRjOTMR_a61_wT5vhFoQuLAdy4PCcB05ehL5QsqaUyKOr85M1I6ReC8q7lr1DK9o0HZaSi_doRVgnMCG8_Yg-xXhLCOUNbVbo-SfkoB2eID36cIc3OkJfjfrPMOYRz_4RQnmHKVUpaHM3TL8rbyvj8-ygx8PUZ5N8qAoAwYF-KMON9zFh46cHCGWKY55nNxTr5U0VtzHBWOW4iGx-etoW15SCdw7CZ_TBahdh_2_fQ9enJ1fHP_DFr7Pz4-8X2HDRJWw7IJIRIYmoGaN8s-Hcst5wWE6ypjaNaHnfW6IFUNHUjFNhWtnVFgSIrt5DhzvvHPx9hpjUOEQDzukJfI5KElpo3i7kwZskk5zJ8tn_BwXnnLC2gN_-AW99DlM5VwlRZKVIgY52kAk-xgBWzWEYddgqStQStiphqyVstQu7bHzdbQwA8Eoz2vBO1i-2wqgH</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>Veerachary, M.</creator><creator>Senjyu, T.</creator><creator>Uezato, K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>7TB</scope><scope>FR3</scope><scope>7QO</scope><scope>P64</scope></search><sort><creationdate>20030801</creationdate><title>Neural-network-based maximum-power-point tracking of coupled-inductor interleaved-boost-converter-supplied PV system using fuzzy controller</title><author>Veerachary, M. ; Senjyu, T. ; Uezato, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-f7e0920890832214bb44f2dc4e4515fc3c5864ddf0a8e18532418c6973fe8e873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Control systems</topic><topic>Error correction</topic><topic>Fuzzy control</topic><topic>Fuzzy systems</topic><topic>Neural networks</topic><topic>Pulse generation</topic><topic>Signal generators</topic><topic>Solar power generation</topic><topic>Studies</topic><topic>Switches</topic><topic>Switching converters</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Veerachary, M.</creatorcontrib><creatorcontrib>Senjyu, T.</creatorcontrib><creatorcontrib>Uezato, K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Veerachary, M.</au><au>Senjyu, T.</au><au>Uezato, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural-network-based maximum-power-point tracking of coupled-inductor interleaved-boost-converter-supplied PV system using fuzzy controller</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2003-08-01</date><risdate>2003</risdate><volume>50</volume><issue>4</issue><spage>749</spage><epage>758</epage><pages>749-758</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>The photovoltaic (PV) generator exhibits a nonlinear V-I characteristic and its maximum power (MP) point varies with solar insolation. In this paper, a feedforward MP-point tracking scheme is developed for the coupled-inductor interleaved-boost-converter-fed PV system using a fuzzy controller. The proposed converter has lower switch current stress and improved efficiency over the noncoupled converter system. For a given solar insolation, the tracking algorithm changes the duty ratio of the converter such that the solar cell array voltage equals the voltage corresponding to the MP point. This is done by the feedforward loop, which generates an error signal by comparing the instantaneous array voltage and reference voltage corresponding to the MP point. Depending on the error and change of error signals, the fuzzy controller generates a control signal for the pulsewidth-modulation generator which in turn adjusts the duty ratio of the converter. The reference voltage corresponding to the MP point for the feedforward loop is obtained by an offline trained neural network. Experimental data are used for offline training of the neural network, which employs a backpropagation algorithm. The proposed peak power tracking effectiveness is demonstrated through simulation and experimental results. Tracking performance of the proposed controller is also compared with the conventional proportional-plus-integral-controller-based system. These studies reveal that the fuzzy controller results in better tracking performance.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2003.814762</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2003-08, Vol.50 (4), p.749-758
issn 0278-0046
1557-9948
language eng
recordid cdi_proquest_miscellaneous_29429762
source IEEE Electronic Library (IEL) Journals
subjects Control systems
Error correction
Fuzzy control
Fuzzy systems
Neural networks
Pulse generation
Signal generators
Solar power generation
Studies
Switches
Switching converters
Voltage
title Neural-network-based maximum-power-point tracking of coupled-inductor interleaved-boost-converter-supplied PV system using fuzzy controller
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A13%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural-network-based%20maximum-power-point%20tracking%20of%20coupled-inductor%20interleaved-boost-converter-supplied%20PV%20system%20using%20fuzzy%20controller&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Veerachary,%20M.&rft.date=2003-08-01&rft.volume=50&rft.issue=4&rft.spage=749&rft.epage=758&rft.pages=749-758&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2003.814762&rft_dat=%3Cproquest_ieee_%3E901697467%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-f7e0920890832214bb44f2dc4e4515fc3c5864ddf0a8e18532418c6973fe8e873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884292920&rft_id=info:pmid/&rft_ieee_id=1215479&rfr_iscdi=true