Loading…

Phenomenological coefficients in a concentrated alloy for the dumbbell mechanism

We present an adaptation of the self-consistent mean field (SCMF) theory to calculate the transport coefficients in a concentrated alloy for diffusion by the dumbbell mechanism. In this theory, kinetic correlations are accounted for through a set of effective interactions within a non-equilibrium di...

Full description

Saved in:
Bibliographic Details
Published in:Philosophical magazine (Abingdon, England) England), 2006-08, Vol.86 (23), p.3503-3535
Main Authors: Barbe, V., Nastar, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present an adaptation of the self-consistent mean field (SCMF) theory to calculate the transport coefficients in a concentrated alloy for diffusion by the dumbbell mechanism. In this theory, kinetic correlations are accounted for through a set of effective interactions within a non-equilibrium distribution function of the system. Transport coefficients are calculated for the FCC and BCC multicomponent concentrated alloys for simple sets of jump frequencies, including different stabilities of the different defects. A first approximation leads to an analytical expression of the Onsager coefficients in a binary alloy, and a second approximation provides a more accurate prediction. The results of the SCMF theory are compared with existing models and available Monte Carlo simulations, and an interpretation of the set of effective interactions in terms of a competition between jump frequencies is proposed.
ISSN:1478-6435
1478-6443
1478-6433
DOI:10.1080/14786430600654420